Spaces:
Running
Running
File size: 2,668 Bytes
6666c9d 6ddba8c f8daa7e ebea7a7 f8daa7e ebea7a7 6ddba8c cdb7c8c e7cefea d287f72 cdb7c8c 6666c9d cdb7c8c 32b8908 e7cefea 2970a90 e7cefea 2970a90 e7cefea cdb7c8c 25a4e57 0b16a1a fd7a80a cdb7c8c 6666c9d 6ddba8c 6666c9d 6ddba8c 6666c9d 6ddba8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-Instruct-124M',
use_auth_token="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")
model = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-Instruct-124M',
use_auth_token="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")
disclaimer = """**`Disclaimer`:** This demo should be used for research purposes only. Commercial use is strictly **prohibited**. The model output is not censored and the authors do not endorse the opinions in the generated content. **Use at your own risk.**"""
with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
gr.Markdown("""<h1><center>🔥Aira Demo 🤓🚀</h1></center>""")
with gr.Row(scale=1, equal_height=True):
with gr.Column(scale=5):
chatbot = gr.Chatbot(label="Aira").style(height=300)
with gr.Column(scale=2):
with gr.Tab(label="Parameters ⚙️"):
top_k = gr.Slider( minimum=10, maximum=100, value=50, step=5, interactive=True, label="Top-k",)
top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.70, step=0.05, interactive=True, label="Top-p",)
temperature = gr.Slider( minimum=0.001, maximum=2.0, value=0.1, step=0.1, interactive=True, label="Temperature",)
max_length = gr.Slider( minimum=10, maximum=500, value=100, step=10, interactive=True, label="Max Length",)
msg = gr.Textbox(label="Write a question or comment to Aira", placeholder="Hi Aira, how are you?")
clear = gr.Button("Clear Conversation 🧹")
gr.Markdown(disclaimer)
def generate_response(message, chat_history, top_k, top_p, temperature, max_length):
inputs = tokenizer(tokenizer.bos_token + message + tokenizer.eos_token, return_tensors="pt")
response = model.generate(**inputs,
bos_token_id=tokenizer.bos_token_id,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
do_sample=True,
early_stopping=True,
top_k=top_k,
max_length=max_length,
top_p=top_p,
temperature=temperature,
num_return_sequences=1)
chat_history.append((f"👤 {message}", f"""🤖 {tokenizer.decode(response[0], skip_special_tokens=True).replace(message, "")}"""))
return "", chat_history
msg.submit(generate_response, [msg, chatbot, top_k, top_p, temperature, max_length], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch() |