Spaces:
Running
Running
File size: 12,633 Bytes
d1e315a 9b402c2 6ddba8c 9b402c2 f47d543 c627036 9b402c2 ee14e60 c627036 d1e315a 9b402c2 399af28 d1e315a 9b402c2 4d8cb31 d1e315a 9b402c2 c627036 d1e315a 9b402c2 c627036 9b402c2 ced5451 c627036 d1e315a c1ee7c5 ee14e60 b38997d c627036 c1ee7c5 ee14e60 c1ee7c5 d1e315a c1ee7c5 b31de11 c1ee7c5 c627036 c1ee7c5 ee14e60 c1ee7c5 c627036 c1ee7c5 ee14e60 d1e315a 9b402c2 d1e315a c1ee7c5 d1e315a e7cefea d287f72 c627036 d1e315a a9c7069 dd4072c d1e315a 9b402c2 595e5fc c627036 2677645 c627036 2677645 c627036 d6f0dcf 9b402c2 65ab98d 9b402c2 94d458b 9b402c2 cdb7c8c 6666c9d d1e315a 9b402c2 d1e315a 53ebaa0 9b402c2 ebeaddc d1e315a 6ddba8c 53ebaa0 6ddba8c c627036 5716a02 c627036 6666c9d c627036 6ddba8c c627036 d1e315a 9b402c2 94d458b 9b402c2 94d458b 9b402c2 d1e315a 53ebaa0 d1e315a c627036 d6f0dcf 9b402c2 6ddba8c d1e315a 9b402c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import time
import torch
import joblib
import gradio as gr
from datasets import load_dataset
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
# download the instruct-aira-dataset
dataset = load_dataset("nicholasKluge/instruct-aira-dataset", split='english')
# convert the dataset to a pandas dataframe
df = dataset.to_pandas()
# rename the columns
df.columns = ['Prompt', 'Completion']
# add a column to store the cosine similarity
df['Cosine Similarity'] = None
# Load the saved prompt TfidfVectorizer
prompt_tfidf_vectorizer = joblib.load('prompt_vectorizer.pkl')
# load the prompt tfidf_matrix
prompt_tfidf_matrix = joblib.load('prompt_tfidf_matrix.pkl')
# Load the saved completion TfidfVectorizer
completion_tfidf_vectorizer = joblib.load('completion_vectorizer.pkl')
# load the completion tfidf_matrix
completion_tfidf_matrix = joblib.load('completion_tfidf_matrix.pkl')
# specify the model's ids
model_id = "nicholasKluge/Aira-OPT-125M"
rewardmodel_id = "nicholasKluge/RewardModel"
toxicitymodel_id = "nicholasKluge/ToxicityModel"
# specify the device (cuda if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load the models (chatbot, reward model, toxicity model)
model = AutoModelForCausalLM.from_pretrained(model_id)
rewardModel = AutoModelForSequenceClassification.from_pretrained(rewardmodel_id)
toxicityModel = AutoModelForSequenceClassification.from_pretrained(toxicitymodel_id)
# set the models to evaluation mode
model.eval()
rewardModel.eval()
toxicityModel.eval()
# set the models to the device
model.to(device)
rewardModel.to(device)
toxicityModel.to(device)
# load the tokenizers
tokenizer = AutoTokenizer.from_pretrained(model_id)
rewardTokenizer = AutoTokenizer.from_pretrained(rewardmodel_id)
toxiciyTokenizer = AutoTokenizer.from_pretrained(toxicitymodel_id)
intro = """
## What is `Aira`?
[`Aira`](https://huggingface.co/nicholasKluge/Aira-OPT-125M) is a series of open-domain chatbots (Portuguese and English) achieved via `instruction-tuning` and `RLHF`. Aira-2 is the second version of the Aira series. The Aira series was developed to help researchers explore the challenges related to the Alignment problem.
## Limitations
We developed our open-domain conversational chatbots via instruction-tuning. This approach has a lot of limitations. Even though we can make a chatbot that can answer questions about anything, forcing the model to produce good-quality responses is hard. And by good, we mean **factual** and **nontoxic** text. This leads us to two of the most common problems with generative models used in conversational applications:
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.
## Intended Use
`Aira` is intended only for academic research. For more information, read our [model card](https://huggingface.co/nicholasKluge/Aira-OPT-125M) to see how we developed `Aira`.
## How this demo works?
For this demo, we use the lighter model we have trained from the OPT series (`Aira-OPT-125M`). This demo employs a [`reward model`](https://huggingface.co/nicholasKluge/RewardModel) and a [`toxicity model`](https://huggingface.co/nicholasKluge/ToxicityModel) to evaluate the score of each candidate's response, considering its alignment with the user's message and its level of toxicity. The generation function arranges the candidate responses in order of their reward scores and eliminates any responses deemed toxic or harmful. Subsequently, the generation function returns the candidate response with the highest score that surpasses the safety threshold, or a default message if no safe candidates are identified.
"""
search_intro ="""
<h2><center>Explore Aira's Dataset 🔍</h2></center>
Here, users can look for instances in Aira's fine-tuning dataset where a given prompt or completion resembles an instruction in its dataset. To enable a fast search, we use the Term Frequency-Inverse Document Frequency (TF-IDF) representation and cosine similarity to explore the dataset. The pre-trained TF-IDF vectorizers and corresponding TF-IDF matrices are available in this repository. Below, we present the top five most similar instances in Aira's dataset for every search query.
Users can use this to explore how the model interpolates on the fine-tuning data and if it is capable of following instructions that are out of the fine-tuning distribution.
"""
disclaimer = """
**Disclaimer:** You should use this demo for research purposes only. Moderators do not censor the model output, and the authors do not endorse the opinions generated by this model.
If you would like to complain about any message produced by `Aira`, please contact [nicholas@airespucrs.org](mailto:nicholas@airespucrs.org).
"""
with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
gr.Markdown("""<h1><center>Aira Demo 🤓💬</h1></center>""")
gr.Markdown(intro)
chatbot = gr.Chatbot(label="Aira",
height=500,
show_copy_button=True,
avatar_images=("./astronaut.png", "./robot.png"),
render_markdown= True,
line_breaks=True,
likeable=False,
layout='panel')
msg = gr.Textbox(label="Write a question or instruction to Aira ...", placeholder="What is the capital of Brazil?")
# Parameters to control the generation
with gr.Accordion(label="Parameters ⚙️", open=False):
safety = gr.Radio(["On", "Off"], label="Guard Rail 🛡️", value="On", info="Helps prevent the model from generating toxic/harmful content.")
top_k = gr.Slider(minimum=10, maximum=100, value=30, step=5, interactive=True, label="Top-k", info="Controls the number of highest probability tokens to consider for each step.")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.30, step=0.05, interactive=True, label="Top-p", info="Controls the cumulative probability of the generated tokens.")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.1, step=0.1, interactive=True, label="Temperature", info="Controls the randomness of the generated tokens.")
repetition_penalty = gr.Slider(minimum=1, maximum=2, value=1.1, step=0.1, interactive=True, label="Repetition Penalty", info="Higher values help the model to avoid repetition in text generation.")
max_length = gr.Slider(minimum=10, maximum=500, value=200, step=10, interactive=True, label="Max Length", info="Controls the maximum length of the generated text.")
smaple_from = gr.Slider(minimum=2, maximum=10, value=2, step=1, interactive=True, label="Sample From", info="Controls the number of generations that the reward model will sample from.")
clear = gr.Button("Clear Conversation 🧹")
gr.Markdown(search_intro)
search_input = gr.Textbox(label="Paste here the prompt or completion you would like to search ...", placeholder="What is the Capital of Brazil?")
search_field = gr.Radio(['Prompt', 'Completion'], label="Dataset Column", value='Prompt')
submit = gr.Button(value="Search")
with gr.Row():
out_dataframe = gr.Dataframe(
headers=df.columns.tolist(),
datatype=["str", "str", "str"],
row_count=10,
col_count=(3, "fixed"),
wrap=True,
interactive=False
)
gr.Markdown(disclaimer)
def user(user_message, chat_history):
"""
Chatbot's user message handler.
"""
return gr.update(value=user_message, interactive=True), chat_history + [["👤 " + user_message, None]]
def generate_response(user_msg, top_p, temperature, top_k, max_length, smaple_from, repetition_penalty, safety, chat_history):
"""
Chatbot's response generator.
"""
# OPT tokenizer already adds the BOS token, so we do not need to add it manually
inputs = tokenizer(user_msg + tokenizer.sep_token, return_tensors="pt").to(model.device)
generated_response = model.generate(**inputs,
bos_token_id=tokenizer.bos_token_id,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
do_sample=True,
early_stopping=True,
renormalize_logits=True,
length_penalty=0.3,
top_k=top_k,
max_length=max_length,
top_p=top_p,
temperature=temperature,
num_return_sequences=smaple_from)
decoded_text = [tokenizer.decode(tokens, skip_special_tokens=True).replace(user_msg, "") for tokens in generated_response]
rewards = list()
toxicities = list()
for text in decoded_text:
reward_tokens = rewardTokenizer(user_msg, text,
truncation=True,
max_length=512,
return_token_type_ids=False,
return_tensors="pt",
return_attention_mask=True)
reward_tokens.to(rewardModel.device)
reward = rewardModel(**reward_tokens)[0].item()
toxicity_tokens = toxiciyTokenizer(user_msg + " " + text,
truncation=True,
max_length=512,
return_token_type_ids=False,
return_tensors="pt",
return_attention_mask=True)
toxicity_tokens.to(toxicityModel.device)
toxicity = toxicityModel(**toxicity_tokens)[0].item()
rewards.append(reward)
toxicities.append(toxicity)
toxicity_threshold = 5
ordered_generations = sorted(zip(decoded_text, rewards, toxicities), key=lambda x: x[1], reverse=True)
if safety == "On":
ordered_generations = [(x, y, z) for (x, y, z) in ordered_generations if z >= toxicity_threshold]
if len(ordered_generations) == 0:
bot_message = """I apologize for the inconvenience, but it appears that no suitable responses meeting our safety standards could be identified. Unfortunately, this indicates that the generated content may contain elements of toxicity or may not help address your message. Your input is valuable to us, and we strive to ensure a safe and constructive conversation. Please feel free to provide further details or ask any other questions, and I will do my best to assist you."""
else:
bot_message = ordered_generations[0][0]
chat_history[-1][1] = "🤖 "
for character in bot_message:
chat_history[-1][1] += character
time.sleep(0.005)
yield chat_history
def search_in_datset(column_name, search_string):
"""
Search in the dataset for the most similar instances.
"""
temp_df = df.copy()
if column_name == 'Prompt':
search_vector = prompt_tfidf_vectorizer.transform([search_string])
cosine_similarities = cosine_similarity(prompt_tfidf_matrix, search_vector)
temp_df['Cosine Similarity'] = cosine_similarities
temp_df.sort_values('Cosine Similarity', ascending=False, inplace=True)
return temp_df.head(10)
elif column_name == 'Completion':
search_vector = completion_tfidf_vectorizer.transform([search_string])
cosine_similarities = cosine_similarity(completion_tfidf_matrix, search_vector)
temp_df['Cosine Similarity'] = cosine_similarities
temp_df.sort_values('Cosine Similarity', ascending=False, inplace=True)
return temp_df.head(10)
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
generate_response, [msg, top_p, temperature, top_k, max_length, smaple_from, repetition_penalty, safety, chatbot], chatbot
)
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
msg.submit(lambda x: gr.update(value=''), None,[msg])
clear.click(lambda: None, None, chatbot, queue=False)
submit.click(fn=search_in_datset, inputs=[search_field, search_input], outputs=out_dataframe)
demo.queue()
demo.launch()
|