Spaces:
Running
Running
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
import gradio as gr | |
tokenizer = GPT2Tokenizer.from_pretrained('nicholasKluge/Aira-Instruct-124M') | |
model = GPT2LMHeadModel.from_pretrained('nicholasKluge/Aira-Instruct-124M') | |
import gradio as gr | |
title = "AIRA Demo 🤓" | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear Conversation") | |
def respond(message, chat_history): | |
inputs = tokenizer(tokenizer.bos_token + message + tokenizer.eos_token, return_tensors="pt") | |
response = model.generate(**inputs, | |
bos_token_id=tokenizer.bos_token_id, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
do_sample=True, | |
early_stopping=True, | |
top_k=50, | |
max_length=200, | |
top_p=0.95, | |
temperature=0.7, | |
num_return_sequences=1) | |
chat_history.append((f"👤 {message}", f"""🤖 {tokenizer.decode(response[0], skip_special_tokens=True).replace(message, "")}""")) | |
return "", chat_history | |
msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.launch() |