nicholasKluge commited on
Commit
8a881cc
·
1 Parent(s): bb6b840

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -17
app.py CHANGED
@@ -9,8 +9,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequen
9
 
10
 
11
  # download the instruct-aira-dataset
12
- #dataset = load_dataset("nicholasKluge/instruct-aira-dataset", split='english')
13
- dataset = load_dataset("parquet", data_files="instruct-aira-dataset.parquet")
14
 
15
  # convert the dataset to a pandas dataframe
16
  df = dataset['train'].to_pandas()
@@ -184,33 +183,33 @@ with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
184
  toxicities = list()
185
 
186
  for text in decoded_text:
187
- reward_tokens = rewardTokenizer(user_msg, text,
188
  truncation=True,
189
  max_length=512,
190
  return_token_type_ids=False,
191
  return_tensors="pt",
192
  return_attention_mask=True)
 
 
 
 
 
193
 
194
- reward_tokens.to(rewardModel.device)
195
 
196
- reward = rewardModel(**reward_tokens)[0].item()
197
- rewards.append(reward)
198
-
199
- if safety == "On":
200
-
201
- toxicity_tokens = toxiciyTokenizer(user_msg + " " + text,
202
  truncation=True,
203
  max_length=512,
204
  return_token_type_ids=False,
205
  return_tensors="pt",
206
  return_attention_mask=True)
207
-
208
- toxicity_tokens.to(toxicityModel.device)
209
-
210
- toxicity = toxicityModel(**toxicity_tokens)[0].item()
211
- toxicities.append(toxicity)
212
-
213
- toxicity_threshold = 5
214
 
215
  ordered_generations = sorted(zip(decoded_text, rewards, toxicities), key=lambda x: x[1], reverse=True)
216
 
 
9
 
10
 
11
  # download the instruct-aira-dataset
12
+ dataset = load_dataset("nicholasKluge/instruct-aira-dataset", split='english')
 
13
 
14
  # convert the dataset to a pandas dataframe
15
  df = dataset['train'].to_pandas()
 
183
  toxicities = list()
184
 
185
  for text in decoded_text:
186
+ reward_tokens = rewardTokenizer(user_msg, text,
187
  truncation=True,
188
  max_length=512,
189
  return_token_type_ids=False,
190
  return_tensors="pt",
191
  return_attention_mask=True)
192
+
193
+ reward_tokens.to(rewardModel.device)
194
+
195
+ reward = rewardModel(**reward_tokens)[0].item()
196
+ rewards.append(reward)
197
 
198
+ if safety == "On":
199
 
200
+ toxicity_tokens = toxiciyTokenizer(user_msg + " " + text,
 
 
 
 
 
201
  truncation=True,
202
  max_length=512,
203
  return_token_type_ids=False,
204
  return_tensors="pt",
205
  return_attention_mask=True)
206
+
207
+ toxicity_tokens.to(toxicityModel.device)
208
+
209
+ toxicity = toxicityModel(**toxicity_tokens)[0].item()
210
+ toxicities.append(toxicity)
211
+
212
+ toxicity_threshold = 5
213
 
214
  ordered_generations = sorted(zip(decoded_text, rewards, toxicities), key=lambda x: x[1], reverse=True)
215