Spaces:
Build error
Build error
import os | |
import matplotlib | |
matplotlib.use('agg') | |
from PIL import Image | |
import gradio | |
import benepar | |
import spacy | |
import nltk | |
from nltk.tree import Tree | |
from nltk.draw.tree import TreeView | |
from huggingface_hub import hf_hub_url, cached_download | |
from weakly_supervised_parser.tree.evaluate import calculate_F1_for_spans, tree_to_spans | |
from weakly_supervised_parser.inference import Predictor | |
from weakly_supervised_parser.model.trainer import InsideOutsideStringClassifier | |
from weakly_supervised_parser.model.span_classifier import LightningModel | |
if __name__ == "__main__": | |
nltk.download('stopwords') | |
benepar.download('benepar_en3') | |
nlp = spacy.load("en_core_web_md") | |
nlp.add_pipe("benepar", config={"model": "benepar_en3"}) | |
# inside_model = InsideOutsideStringClassifier(model_name_or_path="roberta-base", max_seq_length=256) | |
fetch_url_inside_model = hf_hub_url(repo_id="nickil/weakly-supervised-parsing", filename="inside_model.ckpt", revision="main") | |
inside_model = LightningModel.load_from_checkpoint(checkpoint_path=cached_download(fetch_url_inside_model)) | |
# inside_model.load_model(pre_trained_model_path=cached_download(fetch_url_inside_model)) | |
# outside_model = InsideOutsideStringClassifier(model_name_or_path="roberta-base", max_seq_length=64) | |
# outside_model.load_model(pre_trained_model_path=TRAINED_MODEL_PATH + "outside_model.onnx") | |
# inside_outside_model = InsideOutsideStringClassifier(model_name_or_path="roberta-base", max_seq_length=256) | |
# inside_outside_model.load_model(pre_trained_model_path=TRAINED_MODEL_PATH + "inside_outside_model.onnx") | |
def predict(sentence, model): | |
gold_standard = list(nlp(sentence).sents)[0]._.parse_string | |
if model == "inside": | |
best_parse = Predictor(sentence=sentence).obtain_best_parse(predict_type="inside", model=inside_model, scale_axis=1, predict_batch_size=128) | |
elif model == "outside": | |
best_parse = Predictor(sentence=sentence).obtain_best_parse(predict_type="outside", model=outside_model, scale_axis=1, predict_batch_size=128) | |
elif model == "inside-outside": | |
best_parse = Predictor(sentence=sentence).obtain_best_parse(predict_type="inside_outside", model=inside_outside_model, scale_axis=1, predict_batch_size=128) | |
sentence_f1 = calculate_F1_for_spans(tree_to_spans(gold_standard), tree_to_spans(best_parse)) | |
TreeView(Tree.fromstring(gold_standard))._cframe.print_to_file('gold_standard.ps') | |
TreeView(Tree.fromstring(best_parse))._cframe.print_to_file('best_parse.ps') | |
os.system('convert gold_standard.ps gold_standard.png') | |
os.system('convert best_parse.ps best_parse.png') | |
gold_standard_img = Image.open("gold_standard.png") | |
best_parse_img = Image.open("best_parse.png") | |
return gold_standard_img, best_parse_img, f"{sentence_f1:.2f}" | |
iface = gradio.Interface( | |
title="Co-training an Unsupervised Constituency Parser with Weak Supervision", | |
description="Demo for the repository - [weakly-supervised-parsing](https://github.com/Nickil21/weakly-supervised-parsing) (ACL Findings 2022)", | |
theme="default", | |
article="""<h4 class='text-lg font-semibold my-2'>Note</h4> | |
- We use a strong supervised parsing model `benepar_en3` which is based on T5-small to compute the gold parse.<br> | |
- Sentence F1 score corresponds to the macro F1 score. | |
""", | |
allow_flagging="never", | |
fn=predict, | |
inputs=[ | |
gradio.inputs.Textbox(label="Sentence", placeholder="Enter a sentence in English", lines=2), | |
gradio.inputs.Radio(["inside", "outside", "inside-outside"], default="inside", label="Choose Model"), | |
], | |
outputs=[ | |
gradio.outputs.Image(label="Gold Parse Tree"), | |
gradio.outputs.Image(label="Predicted Parse Tree"), | |
gradio.outputs.Textbox(label="F1 score"), | |
], | |
examples=[ | |
["Russia 's war on Ukraine unsettles investors expecting carve-out deal uptick for 2022 .", "inside-outside"], | |
["Bitcoin community under pressure to cut energy use .", "inside"], | |
], | |
) | |
iface.launch(share=True) | |