|
import whisper |
|
import os |
|
from pytube import YouTube |
|
import pandas as pd |
|
import plotly_express as px |
|
import nltk |
|
import plotly.graph_objects as go |
|
from optimum.onnxruntime import ORTModelForSequenceClassification |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification |
|
from sentence_transformers import SentenceTransformer, CrossEncoder, util |
|
import streamlit as st |
|
import en_core_web_lg |
|
|
|
nltk.download('punkt') |
|
|
|
from nltk import sent_tokenize |
|
|
|
@st.experimental_singleton(suppress_st_warning=True) |
|
def load_models(): |
|
asr_model = whisper.load_model("small") |
|
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone") |
|
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english") |
|
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone") |
|
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english") |
|
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer) |
|
sum_pipe = pipeline("summarization",model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn") |
|
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True) |
|
sbert = SentenceTransformer("all-mpnet-base-v2") |
|
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2') |
|
|
|
return asr_model, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder |
|
|
|
@st.experimental_singleton(suppress_st_warning=True) |
|
def get_spacy(): |
|
nlp = en_core_web_lg.load() |
|
return nlp |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def inference(link, upload): |
|
'''Convert Youtube video or Audio upload to text''' |
|
|
|
if validators.url(link): |
|
|
|
yt = YouTube(link) |
|
title = yt.title |
|
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4") |
|
options = whisper.DecodingOptions(without_timestamps=True) |
|
results = asr_model.transcribe(path) |
|
|
|
return results, yt.title |
|
|
|
elif upload: |
|
results = asr_model.transcribe(upload) |
|
|
|
return results, "Transcribed Earnings Audio" |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def sentiment_pipe(earnings_text): |
|
'''Determine the sentiment of the text''' |
|
|
|
earnings_sentences = sent_tokenize(earnings_text) |
|
earnings_sentiment = sent_pipe(earnings_sentences) |
|
|
|
return earnings_sentiment, earnings_sentences |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def preprocess_plain_text(text,window_size=3): |
|
'''Preprocess text for semantic search''' |
|
|
|
text = text.encode("ascii", "ignore").decode() |
|
text = re.sub(r"https*\S+", " ", text) |
|
text = re.sub(r"@\S+", " ", text) |
|
text = re.sub(r"#\S+", " ", text) |
|
text = re.sub(r"\s{2,}", " ", text) |
|
|
|
|
|
|
|
lines = [line.strip() for line in text.splitlines()] |
|
|
|
|
|
chunks = [phrase.strip() for line in lines for phrase in line.split(" ")] |
|
|
|
|
|
text = '\n'.join(chunk for chunk in chunks if chunk) |
|
|
|
|
|
paragraphs = [] |
|
for paragraph in text.replace('\n',' ').split("\n\n"): |
|
if len(paragraph.strip()) > 0: |
|
paragraphs.append(sent_tokenize(paragraph.strip())) |
|
|
|
|
|
|
|
|
|
window_size = window_size |
|
passages = [] |
|
for paragraph in paragraphs: |
|
for start_idx in range(0, len(paragraph), window_size): |
|
end_idx = min(start_idx+window_size, len(paragraph)) |
|
passages.append(" ".join(paragraph[start_idx:end_idx])) |
|
|
|
print(f"Sentences: {sum([len(p) for p in paragraphs])}") |
|
print(f"Passages: {len(passages)}") |
|
|
|
return passages |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def chunk_clean_text(text): |
|
|
|
"""Chunk text longer than 500 tokens""" |
|
|
|
article = nlp(text) |
|
sentences = [i.text for i in list(article.sents)] |
|
|
|
current_chunk = 0 |
|
chunks = [] |
|
|
|
for sentence in sentences: |
|
if len(chunks) == current_chunk + 1: |
|
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500: |
|
chunks[current_chunk].extend(sentence.split(" ")) |
|
else: |
|
current_chunk += 1 |
|
chunks.append(sentence.split(" ")) |
|
else: |
|
chunks.append(sentence.split(" ")) |
|
|
|
for chunk_id in range(len(chunks)): |
|
chunks[chunk_id] = " ".join(chunks[chunk_id]) |
|
|
|
return chunks |
|
|
|
def summary_downloader(raw_text): |
|
|
|
b64 = base64.b64encode(raw_text.encode()).decode() |
|
new_filename = "new_text_file_{}_.txt".format(time_str) |
|
st.markdown("#### Download Summary as a File ###") |
|
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>' |
|
st.markdown(href,unsafe_allow_html=True) |
|
|
|
def get_all_entities_per_sentence(text): |
|
doc = nlp(''.join(text)) |
|
|
|
sentences = list(doc.sents) |
|
|
|
entities_all_sentences = [] |
|
for sentence in sentences: |
|
entities_this_sentence = [] |
|
|
|
|
|
for entity in sentence.ents: |
|
entities_this_sentence.append(str(entity)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
entities_xlm = [entity["word"] for entity in ner_model(str(sentence))] |
|
for entity in entities_xlm: |
|
entities_this_sentence.append(str(entity)) |
|
|
|
entities_all_sentences.append(entities_this_sentence) |
|
|
|
return entities_all_sentences |
|
|
|
def get_all_entities(text): |
|
all_entities_per_sentence = get_all_entities_per_sentence(text) |
|
return list(itertools.chain.from_iterable(all_entities_per_sentence)) |
|
|
|
def get_and_compare_entities(article_content,summary_output): |
|
|
|
all_entities_per_sentence = get_all_entities_per_sentence(article_content) |
|
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence)) |
|
|
|
all_entities_per_sentence = get_all_entities_per_sentence(summary_output) |
|
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence)) |
|
|
|
matched_entities = [] |
|
unmatched_entities = [] |
|
for entity in entities_summary: |
|
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article): |
|
matched_entities.append(entity) |
|
elif any( |
|
np.inner(sentence_embedding_model.encode(entity, show_progress_bar=False), |
|
sentence_embedding_model.encode(art_entity, show_progress_bar=False)) > 0.9 for |
|
art_entity in entities_article): |
|
matched_entities.append(entity) |
|
else: |
|
unmatched_entities.append(entity) |
|
|
|
matched_entities = list(dict.fromkeys(matched_entities)) |
|
unmatched_entities = list(dict.fromkeys(unmatched_entities)) |
|
|
|
matched_entities_to_remove = [] |
|
unmatched_entities_to_remove = [] |
|
|
|
for entity in matched_entities: |
|
for substring_entity in matched_entities: |
|
if entity != substring_entity and entity.lower() in substring_entity.lower(): |
|
matched_entities_to_remove.append(entity) |
|
|
|
for entity in unmatched_entities: |
|
for substring_entity in unmatched_entities: |
|
if entity != substring_entity and entity.lower() in substring_entity.lower(): |
|
unmatched_entities_to_remove.append(entity) |
|
|
|
matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove)) |
|
unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove)) |
|
|
|
for entity in matched_entities_to_remove: |
|
matched_entities.remove(entity) |
|
for entity in unmatched_entities_to_remove: |
|
unmatched_entities.remove(entity) |
|
|
|
return matched_entities, unmatched_entities |
|
|
|
def highlight_entities(article_content,summary_output): |
|
|
|
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">" |
|
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">" |
|
markdown_end = "</mark>" |
|
|
|
matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output) |
|
|
|
print(summary_output) |
|
|
|
for entity in matched_entities: |
|
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_green + entity + markdown_end,summary_output) |
|
|
|
for entity in unmatched_entities: |
|
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_red + entity + markdown_end,summary_output) |
|
|
|
print("") |
|
print(summary_output) |
|
|
|
print("") |
|
print(summary_output) |
|
|
|
soup = BeautifulSoup(summary_output, features="html.parser") |
|
|
|
return HTML_WRAPPER.format(soup) |
|
|
|
|
|
def display_df_as_table(model,top_k,score='score'): |
|
'''Display the df with text and scores as a table''' |
|
|
|
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text']) |
|
df['Score'] = round(df['Score'],2) |
|
|
|
return df |
|
|
|
def make_spans(text,results): |
|
results_list = [] |
|
for i in range(len(results)): |
|
results_list.append(results[i]['label']) |
|
facts_spans = [] |
|
facts_spans = list(zip(sent_tokenizer(text),results_list)) |
|
return facts_spans |
|
|
|
|
|
def fin_ext(text): |
|
results = remote_clx(sent_tokenizer(text)) |
|
return make_spans(text,results) |