nickmuchi's picture
Update app.py
3f0f70e
raw
history blame
5.18 kB
import whisper
import os
from pytube import YouTube
import pandas as pd
import plotly_express as px
import nltk
import plotly.graph_objects as go
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import streamlit as st
nltk.download('punkt')
from nltk import sent_tokenize
st.set_page_config(
page_title="Home",
page_icon="πŸ“ž",
)
st.sidebar.header("Home")
st.markdown("## Earnings Call Analysis Whisperer")
st.markdown(
"""
This app assists finance analysts with transcribing and analysis Earnings Calls by carrying out the following tasks:
- Transcribing earnings calls using Open AI's Whisper.
- Analysing the sentiment of transcribed text using the quantized version of [FinBert-Tone](https://huggingface.co/nickmuchi/quantized-optimum-finbert-tone).
- Semantic search engine with [Sentence-Transformers](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) and reranking results with a Cross-Encoder.
**πŸ‘ˆ Navigate sequentially to the tabs on the sidebar**
"""
)
auth_token = os.environ.get("auth_token")
progress_bar = st.sidebar.progress(0)
@st.experimental_singleton()
def load_models():
asr_model = whisper.load_model("small")
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
return asr_model, q_model, q_tokenizer, cross_encoder
asr_model, q_model, q_tokenizer, cross_encoder = load_models()
@st.experimental_memo(suppress_st_warning=True)
def inference(link, upload):
'''Convert Youtube video or Audio upload to text'''
if validators.url(link):
yt = YouTube(link)
title = yt.title
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
options = whisper.DecodingOptions(without_timestamps=True)
results = asr_model.transcribe(path)
return results, yt.title
elif upload:
results = asr_model.transcribe(upload)
return results, "Transcribed Earnings Audio"
@st.experimental_memo(suppress_st_warning=True)
def sentiment_pipe(earnings_text):
'''Determine the sentiment of the text'''
remote_clx = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
earnings_sentiment = remote_clx(sent_tokenize(earnings_text))
return earnings_sentiment
@st.experimental_memo(suppress_st_warning=True)
def preprocess_plain_text(text,window_size=3):
'''Preprocess text for semantic search'''
text = text.encode("ascii", "ignore").decode() # unicode
text = re.sub(r"https*\S+", " ", text) # url
text = re.sub(r"@\S+", " ", text) # mentions
text = re.sub(r"#\S+", " ", text) # hastags
text = re.sub(r"\s{2,}", " ", text) # over spaces
#text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text) # special characters except .,!?
#break into lines and remove leading and trailing space on each
lines = [line.strip() for line in text.splitlines()]
# #break multi-headlines into a line each
chunks = [phrase.strip() for line in lines for phrase in line.split(" ")]
# # drop blank lines
text = '\n'.join(chunk for chunk in chunks if chunk)
## We split this article into paragraphs and then every paragraph into sentences
paragraphs = []
for paragraph in text.replace('\n',' ').split("\n\n"):
if len(paragraph.strip()) > 0:
paragraphs.append(sent_tokenize(paragraph.strip()))
#We combine up to 3 sentences into a passage. You can choose smaller or larger values for window_size
#Smaller value: Context from other sentences might get lost
#Lager values: More context from the paragraph remains, but results are longer
window_size = window_size
passages = []
for paragraph in paragraphs:
for start_idx in range(0, len(paragraph), window_size):
end_idx = min(start_idx+window_size, len(paragraph))
passages.append(" ".join(paragraph[start_idx:end_idx]))
print(f"Sentences: {sum([len(p) for p in paragraphs])}")
print(f"Passages: {len(passages)}")
return passages
def display_df_as_table(model,top_k,score='score'):
'''Display the df with text and scores as a table'''
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
df['Score'] = round(df['Score'],2)
return df
def make_spans(text,results):
results_list = []
for i in range(len(results)):
results_list.append(results[i]['label'])
facts_spans = []
facts_spans = list(zip(sent_tokenizer(text),results_list))
return facts_spans
##Fiscal Sentiment by Sentence
def fin_ext(text):
results = remote_clx(sent_tokenizer(text))
return make_spans(text,results)
progress_bar.empty()