Update pages/1_Earnings_Sentiment_Analysis_π_.py
Browse files
pages/1_Earnings_Sentiment_Analysis_π_.py
CHANGED
@@ -14,9 +14,6 @@ st.subheader(title)
|
|
14 |
|
15 |
earnings_passages = results['text']
|
16 |
|
17 |
-
with st.expander("See Transcribed Earnings Text"):
|
18 |
-
st.write(earnings_passages)
|
19 |
-
|
20 |
with open('earnings.txt','w') as f:
|
21 |
f.write(earnings_passages)
|
22 |
|
@@ -25,6 +22,12 @@ with open('earnings.txt','r') as f:
|
|
25 |
|
26 |
earnings_sentiment, earnings_sentences = sent_pipe(earnings_passages)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
## Save to a dataframe for ease of visualization
|
29 |
sen_df = pd.DataFrame(earnings_sentiment)
|
30 |
sen_df['text'] = earnings_sentences
|
@@ -48,7 +51,9 @@ fig.update_layout(
|
|
48 |
)
|
49 |
)
|
50 |
|
51 |
-
st.
|
|
|
|
|
52 |
|
53 |
## Display sentiment score
|
54 |
pos_perc = grouped[grouped['sentiment']=='Positive']['count'].iloc[0]*100/sen_df.shape[0]
|
@@ -81,6 +86,8 @@ fig.update_layout(
|
|
81 |
)
|
82 |
)
|
83 |
|
|
|
|
|
84 |
## Display negative sentence locations
|
85 |
fig = px.scatter(sen_df, y='label', color='label', size='score', hover_data=['text'], color_discrete_map={"Negative":"firebrick","Neutral":"navajowhite","Positive":"darkgreen"}, title='Sentiment Score Distribution')
|
86 |
|
|
|
14 |
|
15 |
earnings_passages = results['text']
|
16 |
|
|
|
|
|
|
|
17 |
with open('earnings.txt','w') as f:
|
18 |
f.write(earnings_passages)
|
19 |
|
|
|
22 |
|
23 |
earnings_sentiment, earnings_sentences = sent_pipe(earnings_passages)
|
24 |
|
25 |
+
with st.expander("See Transcribed Earnings Text"):
|
26 |
+
st.write(f"Number of Sentences: {len(earnings_ssentences)}")
|
27 |
+
|
28 |
+
st.write(earnings_passages)
|
29 |
+
|
30 |
+
|
31 |
## Save to a dataframe for ease of visualization
|
32 |
sen_df = pd.DataFrame(earnings_sentiment)
|
33 |
sen_df['text'] = earnings_sentences
|
|
|
51 |
)
|
52 |
)
|
53 |
|
54 |
+
col1, col2 = st.columns(2)
|
55 |
+
|
56 |
+
col1.plotly_chart(fig)
|
57 |
|
58 |
## Display sentiment score
|
59 |
pos_perc = grouped[grouped['sentiment']=='Positive']['count'].iloc[0]*100/sen_df.shape[0]
|
|
|
86 |
)
|
87 |
)
|
88 |
|
89 |
+
col2.plotly_chart(fig)
|
90 |
+
|
91 |
## Display negative sentence locations
|
92 |
fig = px.scatter(sen_df, y='label', color='label', size='score', hover_data=['text'], color_discrete_map={"Negative":"firebrick","Neutral":"navajowhite","Positive":"darkgreen"}, title='Sentiment Score Distribution')
|
93 |
|