Update functions.py
Browse files- functions.py +133 -74
functions.py
CHANGED
@@ -66,32 +66,6 @@ margin-bottom: 2.5rem">{}</div> """
|
|
66 |
|
67 |
###################### Functions #######################################################################################
|
68 |
|
69 |
-
# @st.cache_data
|
70 |
-
# def get_yt_audio(url):
|
71 |
-
# temp_audio_file = os.path.join('output', 'audio')
|
72 |
-
|
73 |
-
# ydl_opts = {
|
74 |
-
# 'format': 'bestaudio/best',
|
75 |
-
# 'postprocessors': [{
|
76 |
-
# 'key': 'FFmpegExtractAudio',
|
77 |
-
# 'preferredcodec': 'mp3',
|
78 |
-
# 'preferredquality': '192',
|
79 |
-
# }],
|
80 |
-
# 'outtmpl': temp_audio_file,
|
81 |
-
# 'quiet': True,
|
82 |
-
# }
|
83 |
-
|
84 |
-
# with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
85 |
-
|
86 |
-
# info = ydl.extract_info(url, download=False)
|
87 |
-
# title = info.get('title', None)
|
88 |
-
# ydl.download([url])
|
89 |
-
|
90 |
-
# #with open(temp_audio_file+'.mp3', 'rb') as file:
|
91 |
-
# audio_file = os.path.join('output', 'audio.mp3')
|
92 |
-
|
93 |
-
# return audio_file, title
|
94 |
-
|
95 |
#load all required models and cache
|
96 |
@st.cache_resource
|
97 |
def load_models():
|
@@ -134,6 +108,43 @@ def get_yt_audio(url):
|
|
134 |
|
135 |
return audio_stream, title
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
@st.cache_data
|
138 |
def load_whisper_api(audio):
|
139 |
|
@@ -144,12 +155,97 @@ def load_whisper_api(audio):
|
|
144 |
return transcript
|
145 |
|
146 |
@st.cache_data
|
147 |
-
def
|
|
|
148 |
|
149 |
-
|
150 |
-
model = whisper.load_model(model_name)
|
151 |
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
@st.cache_data
|
155 |
def inference(link, upload, _asr_model):
|
@@ -161,46 +257,7 @@ def inference(link, upload, _asr_model):
|
|
161 |
|
162 |
st.info("`Downloading YT audio...`")
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
print(f'audio_file:{audio_file}')
|
167 |
-
|
168 |
-
st.session_state['audio'] = audio_file
|
169 |
-
|
170 |
-
print(f"audio_file_session_state:{st.session_state['audio'] }")
|
171 |
-
|
172 |
-
#Get size of audio file
|
173 |
-
audio_size = round(os.path.getsize(st.session_state['audio'])/(1024*1024),1)
|
174 |
-
|
175 |
-
#Check if file is > 24mb, if not then use Whisper API
|
176 |
-
if audio_size <= 25:
|
177 |
-
|
178 |
-
st.info("`Transcribing YT audio...`")
|
179 |
-
|
180 |
-
#Use whisper API
|
181 |
-
results = load_whisper_api(st.session_state['audio'])['text']
|
182 |
-
|
183 |
-
else:
|
184 |
-
|
185 |
-
st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️")
|
186 |
-
|
187 |
-
song = AudioSegment.from_file(st.session_state['audio'], format='mp4')
|
188 |
-
|
189 |
-
# PyDub handles time in milliseconds
|
190 |
-
twenty_minutes = 20 * 60 * 1000
|
191 |
-
|
192 |
-
chunks = song[::twenty_minutes]
|
193 |
-
|
194 |
-
transcriptions = []
|
195 |
-
|
196 |
-
video_id = extract.video_id(link)
|
197 |
-
for i, chunk in enumerate(chunks):
|
198 |
-
chunk.export(f'output/chunk_{i}_{video_id}.mp4', format='mp4')
|
199 |
-
transcriptions.append(load_whisper_api(f'output/chunk_{i}_{video_id}.mp4')['text'])
|
200 |
-
|
201 |
-
results = ','.join(transcriptions)
|
202 |
-
|
203 |
-
st.info("`YT Video transcription process complete...`")
|
204 |
|
205 |
return results, title
|
206 |
|
@@ -244,12 +301,14 @@ def inference(link, upload, _asr_model):
|
|
244 |
|
245 |
except Exception as e:
|
246 |
|
247 |
-
st.error(f'''
|
248 |
-
Using
|
|
|
|
|
249 |
|
250 |
-
results = _asr_model.transcribe(st.session_state['audio'], task='transcribe', language='en')
|
251 |
|
252 |
-
return results
|
253 |
|
254 |
@st.cache_data
|
255 |
def clean_text(text):
|
|
|
66 |
|
67 |
###################### Functions #######################################################################################
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
#load all required models and cache
|
70 |
@st.cache_resource
|
71 |
def load_models():
|
|
|
108 |
|
109 |
return audio_stream, title
|
110 |
|
111 |
+
@st.cache_data
|
112 |
+
def get_yt_audio_dl(url):
|
113 |
+
|
114 |
+
'''Back up for when pytube is down'''
|
115 |
+
|
116 |
+
temp_audio_file = os.path.join('output', 'audio')
|
117 |
+
|
118 |
+
ydl_opts = {
|
119 |
+
'format': 'bestaudio/best',
|
120 |
+
'postprocessors': [{
|
121 |
+
'key': 'FFmpegExtractAudio',
|
122 |
+
'preferredcodec': 'mp3',
|
123 |
+
'preferredquality': '192',
|
124 |
+
}],
|
125 |
+
'outtmpl': temp_audio_file,
|
126 |
+
'quiet': True,
|
127 |
+
}
|
128 |
+
|
129 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
130 |
+
|
131 |
+
info = ydl.extract_info(url, download=False)
|
132 |
+
title = info.get('title', None)
|
133 |
+
ydl.download([url])
|
134 |
+
|
135 |
+
#with open(temp_audio_file+'.mp3', 'rb') as file:
|
136 |
+
audio_file = os.path.join('output', 'audio.mp3')
|
137 |
+
|
138 |
+
return audio_file, title
|
139 |
+
|
140 |
+
@st.cache_data
|
141 |
+
def load_asr_model(model_name):
|
142 |
+
|
143 |
+
'''Load the open source whisper model in cases where the API is not working'''
|
144 |
+
model = whisper.load_model(model_name)
|
145 |
+
|
146 |
+
return model
|
147 |
+
|
148 |
@st.cache_data
|
149 |
def load_whisper_api(audio):
|
150 |
|
|
|
155 |
return transcript
|
156 |
|
157 |
@st.cache_data
|
158 |
+
def transcribe_yt_video(url, py_tube=True):
|
159 |
+
'''Transcribe YouTube video'''
|
160 |
|
161 |
+
if py_tube:
|
|
|
162 |
|
163 |
+
audio_file, title = get_yt_audio(link)
|
164 |
+
|
165 |
+
print(f'audio_file:{audio_file}')
|
166 |
+
|
167 |
+
st.session_state['audio'] = audio_file
|
168 |
+
|
169 |
+
print(f"audio_file_session_state:{st.session_state['audio'] }")
|
170 |
+
|
171 |
+
#Get size of audio file
|
172 |
+
audio_size = round(os.path.getsize(st.session_state['audio'])/(1024*1024),1)
|
173 |
+
|
174 |
+
#Check if file is > 24mb, if not then use Whisper API
|
175 |
+
if audio_size <= 25:
|
176 |
+
|
177 |
+
st.info("`Transcribing YT audio...`")
|
178 |
+
|
179 |
+
#Use whisper API
|
180 |
+
results = load_whisper_api(st.session_state['audio'])['text']
|
181 |
+
|
182 |
+
else:
|
183 |
+
|
184 |
+
st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️")
|
185 |
+
|
186 |
+
song = AudioSegment.from_file(st.session_state['audio'], format='mp4')
|
187 |
+
|
188 |
+
# PyDub handles time in milliseconds
|
189 |
+
twenty_minutes = 20 * 60 * 1000
|
190 |
+
|
191 |
+
chunks = song[::twenty_minutes]
|
192 |
+
|
193 |
+
transcriptions = []
|
194 |
+
|
195 |
+
video_id = extract.video_id(link)
|
196 |
+
|
197 |
+
for i, chunk in enumerate(chunks):
|
198 |
+
chunk.export(f'output/chunk_{i}_{video_id}.mp4', format='mp4')
|
199 |
+
transcriptions.append(load_whisper_api(f'output/chunk_{i}_{video_id}.mp4')['text'])
|
200 |
+
|
201 |
+
results = ','.join(transcriptions)
|
202 |
+
|
203 |
+
else:
|
204 |
+
|
205 |
+
audio_file, title = get_yt_audio_dl(link)
|
206 |
+
|
207 |
+
print(f'audio_file:{audio_file}')
|
208 |
+
|
209 |
+
st.session_state['audio'] = audio_file
|
210 |
+
|
211 |
+
print(f"audio_file_session_state:{st.session_state['audio'] }")
|
212 |
+
|
213 |
+
#Get size of audio file
|
214 |
+
audio_size = round(os.path.getsize(st.session_state['audio'])/(1024*1024),1)
|
215 |
+
|
216 |
+
#Check if file is > 24mb, if not then use Whisper API
|
217 |
+
if audio_size <= 25:
|
218 |
+
|
219 |
+
st.info("`Transcribing YT audio...`")
|
220 |
+
|
221 |
+
#Use whisper API
|
222 |
+
results = load_whisper_api(st.session_state['audio'])['text']
|
223 |
+
|
224 |
+
else:
|
225 |
+
|
226 |
+
st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️")
|
227 |
+
|
228 |
+
song = AudioSegment.from_file(st.session_state['audio'], format='mp4')
|
229 |
+
|
230 |
+
# PyDub handles time in milliseconds
|
231 |
+
twenty_minutes = 20 * 60 * 1000
|
232 |
+
|
233 |
+
chunks = song[::twenty_minutes]
|
234 |
+
|
235 |
+
transcriptions = []
|
236 |
+
|
237 |
+
video_id = extract.video_id(link)
|
238 |
+
|
239 |
+
for i, chunk in enumerate(chunks):
|
240 |
+
chunk.export(f'output/chunk_{i}_{video_id}.mp4', format='mp4')
|
241 |
+
transcriptions.append(load_whisper_api(f'output/chunk_{i}_{video_id}.mp4')['text'])
|
242 |
+
|
243 |
+
results = ','.join(transcriptions)
|
244 |
+
|
245 |
+
|
246 |
+
st.info("`YT Video transcription process complete...`")
|
247 |
+
|
248 |
+
return results, title
|
249 |
|
250 |
@st.cache_data
|
251 |
def inference(link, upload, _asr_model):
|
|
|
257 |
|
258 |
st.info("`Downloading YT audio...`")
|
259 |
|
260 |
+
results, title = transcribe_yt_video(link)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
return results, title
|
263 |
|
|
|
301 |
|
302 |
except Exception as e:
|
303 |
|
304 |
+
st.error(f'''PyTube Error: {e},
|
305 |
+
Using yt_dlp module, might take longer than expected''',icon="🚨")
|
306 |
+
|
307 |
+
results, title = transcribe_yt_video(link, py_tube=False)
|
308 |
|
309 |
+
# results = _asr_model.transcribe(st.session_state['audio'], task='transcribe', language='en')
|
310 |
|
311 |
+
return results, title
|
312 |
|
313 |
@st.cache_data
|
314 |
def clean_text(text):
|