nickmuchi commited on
Commit
34b166f
1 Parent(s): 1dcee1b

Update functions.py

Browse files
Files changed (1) hide show
  1. functions.py +6 -6
functions.py CHANGED
@@ -30,6 +30,7 @@ margin-bottom: 2.5rem">{}</div> """
30
  @st.experimental_singleton(suppress_st_warning=True)
31
  def load_models():
32
  asr_model = whisper.load_model("small")
 
33
  q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
34
  ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
35
  q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
@@ -40,7 +41,7 @@ def load_models():
40
  sbert = SentenceTransformer("all-mpnet-base-v2")
41
  cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
42
 
43
- return asr_model, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder
44
 
45
  @st.experimental_singleton(suppress_st_warning=True)
46
  def get_spacy():
@@ -56,15 +57,14 @@ def inference(link, upload):
56
  yt = YouTube(link)
57
  title = yt.title
58
  path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
59
- options = whisper.DecodingOptions(without_timestamps=True)
60
- results = asr_model.transcribe(path)
61
 
62
- return results, yt.title
63
 
64
  elif upload:
65
- results = asr_model.transcribe(upload)
66
 
67
- return results, "Transcribed Earnings Audio"
68
 
69
  @st.experimental_memo(suppress_st_warning=True)
70
  def chunk_long_text(text,threshold):
 
30
  @st.experimental_singleton(suppress_st_warning=True)
31
  def load_models():
32
  asr_model = whisper.load_model("small")
33
+ asr_pipe = pipeline("automatice-speech-recognition",model = "openai/whisper-large")
34
  q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
35
  ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
36
  q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
 
41
  sbert = SentenceTransformer("all-mpnet-base-v2")
42
  cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
43
 
44
+ return asr_pipe, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder
45
 
46
  @st.experimental_singleton(suppress_st_warning=True)
47
  def get_spacy():
 
57
  yt = YouTube(link)
58
  title = yt.title
59
  path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
60
+ results = asr_pipe(path)
 
61
 
62
+ return results['text'], yt.title
63
 
64
  elif upload:
65
+ results = asr_pipe(upload)
66
 
67
+ return results['text'], "Transcribed Earnings Audio"
68
 
69
  @st.experimental_memo(suppress_st_warning=True)
70
  def chunk_long_text(text,threshold):