nickmuchi commited on
Commit
446f9c9
Β·
1 Parent(s): 10f5d2d

Update pages/3_Earnings_Semantic_Search_πŸ”Ž_.py

Browse files
pages/3_Earnings_Semantic_Search_πŸ”Ž_.py CHANGED
@@ -8,13 +8,17 @@ st.markdown("## Earnings Semantic Search with SBert")
8
  def gen_sentiment(text):
9
  '''Generate sentiment of given text'''
10
  return sent_pipe(text)[0]['label']
11
-
12
- bi_enc_options = ["all-mpnet-base-v2","multi-qa-mpnet-base-dot-v1","intfloat/e5-base","all-MiniLM-L12-v2"]
 
 
 
 
13
 
14
  search_input = st.text_input(
15
  label='Enter Your Search Query',value= "What key challenges did the business face?", key='search')
16
 
17
- sbert_model_name = st.sidebar.selectbox("Embedding Model", options=bi_enc_options, key='sbox')
18
 
19
  top_k = 2
20
 
@@ -32,31 +36,34 @@ try:
32
  passages = chunk_long_text(st.session_state['earnings_passages'],150,window_size=window_size)
33
 
34
  with st.spinner(
35
- text=f"Loading {sbert_model_name} encoder..."
36
  ):
37
- sbert = load_sbert(sbert_model_name)
38
 
39
 
40
  ##### Sematic Search #####
41
  # Encode the query using the bi-encoder and find potentially relevant passages
42
- corpus_embeddings = sbert.encode(passages, convert_to_tensor=True, show_progress_bar=True)
43
- question_embedding = sbert.encode(search_input, convert_to_tensor=True)
44
- question_embedding = question_embedding.cpu()
45
- hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
46
- hits = hits[0] # Get the hits for the first query
47
 
48
- ##### Re-Ranking #####
49
- # Now, score all retrieved passages with the cross_encoder
50
- cross_inp = [[search_input, passages[hit['corpus_id']]] for hit in hits]
51
- cross_scores = cross_encoder.predict(cross_inp)
52
 
53
- # Sort results by the cross-encoder scores
54
- for idx in range(len(cross_scores)):
55
- hits[idx]['cross-score'] = cross_scores[idx]
56
 
57
- # Output of top-3 hits from re-ranker
58
- hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
 
59
 
 
 
60
  score='cross-score'
61
  df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in hits[0:int(top_k)]],columns=['Score','Text'])
62
  df['Score'] = round(df['Score'],2)
 
8
  def gen_sentiment(text):
9
  '''Generate sentiment of given text'''
10
  return sent_pipe(text)[0]['label']
11
+
12
+ bi_enc_dict = {'mpnet-base-v2':"all-mpnet-base-v2",
13
+ 'e5-base':'intfloat/e5-base',
14
+ 'instructor-base': 'hkunlp/instructor-base',
15
+ 'mpnet-base-dot-v1':'multi-qa-mpnet-base-dot-v1',
16
+ 'setfit-finance': 'nickmuchi/setfit-finetuned-financial-text-classification'}
17
 
18
  search_input = st.text_input(
19
  label='Enter Your Search Query',value= "What key challenges did the business face?", key='search')
20
 
21
+ sbert_model_name = st.sidebar.selectbox("Embedding Model", options=list(bi_enc_dict.keys()), key='sbox')
22
 
23
  top_k = 2
24
 
 
36
  passages = chunk_long_text(st.session_state['earnings_passages'],150,window_size=window_size)
37
 
38
  with st.spinner(
39
+ text=f"Loading {bi_enc_dict[sbert_model_name]} encoder model..."
40
  ):
41
+ sbert = load_sbert(bi_enc_dict[sbert_model_name])
42
 
43
 
44
  ##### Sematic Search #####
45
  # Encode the query using the bi-encoder and find potentially relevant passages
46
+ # corpus_embeddings = sbert.encode(passages, convert_to_tensor=True, show_progress_bar=True)
47
+ # question_embedding = sbert.encode(search_input, convert_to_tensor=True)
48
+ # question_embedding = question_embedding.cpu()
49
+ # hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
50
+ # hits = hits[0] # Get the hits for the first query
51
 
52
+ # ##### Re-Ranking #####
53
+ # # Now, score all retrieved passages with the cross_encoder
54
+ # cross_inp = [[search_input, passages[hit['corpus_id']]] for hit in hits]
55
+ # cross_scores = cross_encoder.predict(cross_inp)
56
 
57
+ # # Sort results by the cross-encoder scores
58
+ # for idx in range(len(cross_scores)):
59
+ # hits[idx]['cross-score'] = cross_scores[idx]
60
 
61
+ # # Output of top-3 hits from re-ranker
62
+ # hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
63
+ embedding_model = bi_enc_dict[sbert_model_name]
64
 
65
+ hits = embed_text(search_input,passages,embedding_model)
66
+
67
  score='cross-score'
68
  df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in hits[0:int(top_k)]],columns=['Score','Text'])
69
  df['Score'] = round(df['Score'],2)