nickmuchi commited on
Commit
5d1a91e
·
1 Parent(s): 722bfb2

Update functions.py

Browse files
Files changed (1) hide show
  1. functions.py +10 -14
functions.py CHANGED
@@ -217,7 +217,7 @@ def gen_embeddings(embedding_model):
217
  return embeddings
218
 
219
  @st.cache_data
220
- def embed_text(query,title,embedding_model,_docsearch):
221
 
222
  '''Embed text and generate semantic search scores'''
223
 
@@ -230,8 +230,6 @@ def embed_text(query,title,embedding_model,_docsearch):
230
  temperature=0
231
  )
232
 
233
- title = title.split()[0].lower()
234
-
235
  chain = ConversationalRetrievalChain.from_llm(chat_llm,
236
  retriever= _docsearch.as_retriever(),
237
  qa_prompt = load_prompt(),
@@ -304,8 +302,7 @@ def inference(link, upload, _asr_model):
304
 
305
  audio_file = get_yt_audio(link)
306
  # title = yt.title
307
- print(audio_file)
308
- print(len(audio_file))
309
  if 'audio' not in st.session_state:
310
  st.session_state['audio'] = audio_file
311
 
@@ -317,13 +314,12 @@ def inference(link, upload, _asr_model):
317
 
318
  #Use whisper API
319
  results = load_whisper_api(audio_file)['text']
320
- print(results)
321
 
322
  else:
323
 
324
- st.write('File size larger than 24mb, applying chunking and transcription')
325
 
326
- song = AudioSegment.from_file(audio_file, format='mp4')
327
 
328
  # PyDub handles time in milliseconds
329
  twenty_minutes = 20 * 60 * 1000
@@ -333,8 +329,8 @@ def inference(link, upload, _asr_model):
333
  transcriptions = []
334
 
335
  for i, chunk in enumerate(chunks):
336
- chunk.export(f'output/chunk_{i}.mp4', format='mp4')
337
- transcriptions.append(load_whisper_api('output/chunk_{i}.mp4')['text'])
338
 
339
  results = ','.join(transcriptions)
340
 
@@ -365,8 +361,8 @@ def inference(link, upload, _asr_model):
365
  transcriptions = []
366
 
367
  for i, chunk in enumerate(chunks):
368
- chunk.export(f'output/chunk_{i}.mp4', format='mp4')
369
- transcriptions.append(load_whisper_api('output/chunk_{i}.mp4')['text'])
370
 
371
  results = ','.join(transcriptions)
372
 
@@ -374,8 +370,8 @@ def inference(link, upload, _asr_model):
374
 
375
  except Exception as e:
376
 
377
- st.write(f'''Whisper API Error: {e},
378
- Using Whisper module from GitHub, might take longer than expected''')
379
 
380
  results = _asr_model.transcribe(st.session_state['audio'], task='transcribe', language='en')
381
 
 
217
  return embeddings
218
 
219
  @st.cache_data
220
+ def embed_text(query,embedding_model,_docsearch):
221
 
222
  '''Embed text and generate semantic search scores'''
223
 
 
230
  temperature=0
231
  )
232
 
 
 
233
  chain = ConversationalRetrievalChain.from_llm(chat_llm,
234
  retriever= _docsearch.as_retriever(),
235
  qa_prompt = load_prompt(),
 
302
 
303
  audio_file = get_yt_audio(link)
304
  # title = yt.title
305
+
 
306
  if 'audio' not in st.session_state:
307
  st.session_state['audio'] = audio_file
308
 
 
314
 
315
  #Use whisper API
316
  results = load_whisper_api(audio_file)['text']
 
317
 
318
  else:
319
 
320
+ st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️")
321
 
322
+ song = AudioSegment.from_file(audio_file, format='mp3')
323
 
324
  # PyDub handles time in milliseconds
325
  twenty_minutes = 20 * 60 * 1000
 
329
  transcriptions = []
330
 
331
  for i, chunk in enumerate(chunks):
332
+ chunk.export(f'output/chunk_{i}.mp3', format='mp3')
333
+ transcriptions.append(load_whisper_api('output/chunk_{i}.mp3')['text'])
334
 
335
  results = ','.join(transcriptions)
336
 
 
361
  transcriptions = []
362
 
363
  for i, chunk in enumerate(chunks):
364
+ chunk.export(f'output/chunk_{i}.mp3', format='mp3')
365
+ transcriptions.append(load_whisper_api('output/chunk_{i}.mp3')['text'])
366
 
367
  results = ','.join(transcriptions)
368
 
 
370
 
371
  except Exception as e:
372
 
373
+ st.warning(f'''Whisper API Error: {e},
374
+ Using Whisper module from GitHub, might take longer than expected''',icon="⚠️")
375
 
376
  results = _asr_model.transcribe(st.session_state['audio'], task='transcribe', language='en')
377