Update pages/3_Earnings_Semantic_Search_π_.py
Browse files
pages/3_Earnings_Semantic_Search_π_.py
CHANGED
@@ -1,29 +1,62 @@
|
|
1 |
import streamlit as st
|
2 |
from functions import *
|
|
|
|
|
|
|
3 |
|
4 |
st.set_page_config(page_title="Earnings Question/Answering", page_icon="π")
|
|
|
5 |
st.sidebar.header("Semantic Search")
|
6 |
-
st.markdown("## Earnings Semantic Search with LangChain, OpenAI & SBert")
|
7 |
|
8 |
-
|
9 |
-
'''Generate sentiment of given text'''
|
10 |
-
return sent_pipe(text)[0]['label']
|
11 |
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
bi_enc_dict = {'mpnet-base-v2':"all-mpnet-base-v2",
|
29 |
'instructor-base': 'hkunlp/instructor-base'}
|
@@ -33,8 +66,10 @@ search_input = st.text_input(
|
|
33 |
|
34 |
sbert_model_name = st.sidebar.selectbox("Embedding Model", options=list(bi_enc_dict.keys()), key='sbox')
|
35 |
|
36 |
-
chunk_size =
|
37 |
-
overlap_size =
|
|
|
|
|
38 |
|
39 |
try:
|
40 |
|
@@ -47,6 +82,24 @@ try:
|
|
47 |
|
48 |
title = st.session_state['title']
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
embedding_model = bi_enc_dict[sbert_model_name]
|
51 |
|
52 |
with st.spinner(
|
|
|
1 |
import streamlit as st
|
2 |
from functions import *
|
3 |
+
from langchain.chains import QAGenerationChain
|
4 |
+
import itertools
|
5 |
+
|
6 |
|
7 |
st.set_page_config(page_title="Earnings Question/Answering", page_icon="π")
|
8 |
+
|
9 |
st.sidebar.header("Semantic Search")
|
|
|
10 |
|
11 |
+
st.markdown("## Earnings Semantic Search with LangChain, OpenAI & SBert")
|
|
|
|
|
12 |
|
13 |
+
st.markdown(
|
14 |
+
"""
|
15 |
+
<style>
|
16 |
|
17 |
+
#MainMenu {visibility: hidden;
|
18 |
+
# }
|
19 |
+
footer {visibility: hidden;
|
20 |
+
}
|
21 |
+
.css-card {
|
22 |
+
border-radius: 0px;
|
23 |
+
padding: 30px 10px 10px 10px;
|
24 |
+
background-color: black;
|
25 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
26 |
+
margin-bottom: 10px;
|
27 |
+
font-family: "IBM Plex Sans", sans-serif;
|
28 |
+
}
|
29 |
+
|
30 |
+
.card-tag {
|
31 |
+
border-radius: 0px;
|
32 |
+
padding: 1px 5px 1px 5px;
|
33 |
+
margin-bottom: 10px;
|
34 |
+
position: absolute;
|
35 |
+
left: 0px;
|
36 |
+
top: 0px;
|
37 |
+
font-size: 0.6rem;
|
38 |
+
font-family: "IBM Plex Sans", sans-serif;
|
39 |
+
color: white;
|
40 |
+
background-color: green;
|
41 |
+
}
|
42 |
+
|
43 |
+
.css-zt5igj {left:0;
|
44 |
+
}
|
45 |
+
|
46 |
+
span.css-10trblm {margin-left:0;
|
47 |
+
}
|
48 |
|
49 |
+
div.css-1kyxreq {margin-top: -40px;
|
50 |
+
}
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
</style>
|
57 |
+
""",
|
58 |
+
unsafe_allow_html=True,
|
59 |
+
)
|
60 |
|
61 |
bi_enc_dict = {'mpnet-base-v2':"all-mpnet-base-v2",
|
62 |
'instructor-base': 'hkunlp/instructor-base'}
|
|
|
66 |
|
67 |
sbert_model_name = st.sidebar.selectbox("Embedding Model", options=list(bi_enc_dict.keys()), key='sbox')
|
68 |
|
69 |
+
chunk_size = 1000
|
70 |
+
overlap_size = 50
|
71 |
+
|
72 |
+
|
73 |
|
74 |
try:
|
75 |
|
|
|
82 |
|
83 |
title = st.session_state['title']
|
84 |
|
85 |
+
earnings_text = ','.join(st.session_state['earnings_passages'])
|
86 |
+
|
87 |
+
st.session_state.eval_set = generate_eval(
|
88 |
+
earnings_text, 10, 3000)
|
89 |
+
|
90 |
+
# Display the question-answer pairs in the sidebar with smaller text
|
91 |
+
for i, qa_pair in enumerate(st.session_state.eval_set):
|
92 |
+
st.sidebar.markdown(
|
93 |
+
f"""
|
94 |
+
<div class="css-card">
|
95 |
+
<span class="card-tag">Question {i + 1}</span>
|
96 |
+
<p style="font-size: 12px;">{qa_pair['question']}</p>
|
97 |
+
<p style="font-size: 12px;">{qa_pair['answer']}</p>
|
98 |
+
</div>
|
99 |
+
""",
|
100 |
+
unsafe_allow_html=True,
|
101 |
+
)
|
102 |
+
|
103 |
embedding_model = bi_enc_dict[sbert_model_name]
|
104 |
|
105 |
with st.spinner(
|