Update functions.py
Browse files- functions.py +8 -11
functions.py
CHANGED
@@ -60,6 +60,7 @@ margin-bottom: 2.5rem">{}</div> """
|
|
60 |
|
61 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
|
62 |
|
|
|
63 |
#Stuff Chain Type Prompt template
|
64 |
|
65 |
@st.cache_resource
|
@@ -89,12 +90,8 @@ def load_prompt():
|
|
89 |
----------------
|
90 |
{context}"""
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
HumanMessagePromptTemplate.from_template("{question}")
|
95 |
-
]
|
96 |
-
prompt = ChatPromptTemplate.from_messages(messages)
|
97 |
-
|
98 |
return prompt
|
99 |
|
100 |
###################### Functions #######################################################################################
|
@@ -216,12 +213,10 @@ def gen_embeddings(embedding_model):
|
|
216 |
|
217 |
return embeddings
|
218 |
|
219 |
-
@st.cache_data
|
220 |
def embed_text(query,embedding_model,_docsearch):
|
221 |
|
222 |
'''Embed text and generate semantic search scores'''
|
223 |
-
|
224 |
-
chat_history = []
|
225 |
# llm = OpenAI(temperature=0)
|
226 |
chat_llm = ChatOpenAI(streaming=True,
|
227 |
model_name = 'gpt-4',
|
@@ -235,10 +230,12 @@ def embed_text(query,embedding_model,_docsearch):
|
|
235 |
# return_source_documents=True)
|
236 |
|
237 |
chain = ConversationalRetrievalChain.from_llm(chat_llm,
|
238 |
-
retriever= _docsearch.as_retriever(),
|
239 |
-
|
240 |
memory = memory,
|
241 |
return_source_documents=True)
|
|
|
|
|
242 |
|
243 |
answer = chain({"question": query})
|
244 |
|
|
|
60 |
|
61 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
|
62 |
|
63 |
+
|
64 |
#Stuff Chain Type Prompt template
|
65 |
|
66 |
@st.cache_resource
|
|
|
90 |
----------------
|
91 |
{context}"""
|
92 |
|
93 |
+
prompt = SystemMessagePromptTemplate.from_template(system_template),
|
94 |
+
|
|
|
|
|
|
|
|
|
95 |
return prompt
|
96 |
|
97 |
###################### Functions #######################################################################################
|
|
|
213 |
|
214 |
return embeddings
|
215 |
|
|
|
216 |
def embed_text(query,embedding_model,_docsearch):
|
217 |
|
218 |
'''Embed text and generate semantic search scores'''
|
219 |
+
|
|
|
220 |
# llm = OpenAI(temperature=0)
|
221 |
chat_llm = ChatOpenAI(streaming=True,
|
222 |
model_name = 'gpt-4',
|
|
|
230 |
# return_source_documents=True)
|
231 |
|
232 |
chain = ConversationalRetrievalChain.from_llm(chat_llm,
|
233 |
+
retriever= _docsearch.as_retriever(search_kwargs={"k": 3})),
|
234 |
+
get_chat_history=lambda h : h,
|
235 |
memory = memory,
|
236 |
return_source_documents=True)
|
237 |
+
|
238 |
+
chain.combine_docs_chain.llm_chain.prompt.messages[0] = load_prompt()
|
239 |
|
240 |
answer = chain({"question": query})
|
241 |
|