Create new file
Browse files- functions.py +266 -0
functions.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import os
|
3 |
+
from pytube import YouTube
|
4 |
+
import pandas as pd
|
5 |
+
import plotly_express as px
|
6 |
+
import nltk
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
9 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
10 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
11 |
+
import streamlit as st
|
12 |
+
import en_core_web_lg
|
13 |
+
|
14 |
+
nltk.download('punkt')
|
15 |
+
|
16 |
+
from nltk import sent_tokenize
|
17 |
+
|
18 |
+
@st.experimental_singleton(suppress_st_warning=True)
|
19 |
+
def load_models():
|
20 |
+
asr_model = whisper.load_model("small")
|
21 |
+
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
22 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
23 |
+
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
24 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
25 |
+
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
|
26 |
+
sum_pipe = pipeline("summarization",model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn")
|
27 |
+
ner_pip = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
28 |
+
sbert = SentenceTransformer("all-mpnet-base-v2")
|
29 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
30 |
+
|
31 |
+
return asr_model, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder
|
32 |
+
|
33 |
+
@st.experimental_singleton(suppress_st_warning=True)
|
34 |
+
def get_spacy():
|
35 |
+
nlp = en_core_web_lg.load()
|
36 |
+
return nlp
|
37 |
+
|
38 |
+
@st.experimental_memo(suppress_st_warning=True)
|
39 |
+
def inference(link, upload):
|
40 |
+
'''Convert Youtube video or Audio upload to text'''
|
41 |
+
|
42 |
+
if validators.url(link):
|
43 |
+
|
44 |
+
yt = YouTube(link)
|
45 |
+
title = yt.title
|
46 |
+
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
|
47 |
+
options = whisper.DecodingOptions(without_timestamps=True)
|
48 |
+
results = asr_model.transcribe(path)
|
49 |
+
|
50 |
+
return results, yt.title
|
51 |
+
|
52 |
+
elif upload:
|
53 |
+
results = asr_model.transcribe(upload)
|
54 |
+
|
55 |
+
return results, "Transcribed Earnings Audio"
|
56 |
+
|
57 |
+
@st.experimental_memo(suppress_st_warning=True)
|
58 |
+
def sentiment_pipe(earnings_text):
|
59 |
+
'''Determine the sentiment of the text'''
|
60 |
+
|
61 |
+
earnings_sentences = sent_tokenize(earnings_text)
|
62 |
+
earnings_sentiment = sent_pipe(earnings_sentences)
|
63 |
+
|
64 |
+
return earnings_sentiment, earnings_sentences
|
65 |
+
|
66 |
+
@st.experimental_memo(suppress_st_warning=True)
|
67 |
+
def preprocess_plain_text(text,window_size=3):
|
68 |
+
'''Preprocess text for semantic search'''
|
69 |
+
|
70 |
+
text = text.encode("ascii", "ignore").decode() # unicode
|
71 |
+
text = re.sub(r"https*\S+", " ", text) # url
|
72 |
+
text = re.sub(r"@\S+", " ", text) # mentions
|
73 |
+
text = re.sub(r"#\S+", " ", text) # hastags
|
74 |
+
text = re.sub(r"\s{2,}", " ", text) # over spaces
|
75 |
+
#text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text) # special characters except .,!?
|
76 |
+
|
77 |
+
#break into lines and remove leading and trailing space on each
|
78 |
+
lines = [line.strip() for line in text.splitlines()]
|
79 |
+
|
80 |
+
# #break multi-headlines into a line each
|
81 |
+
chunks = [phrase.strip() for line in lines for phrase in line.split(" ")]
|
82 |
+
|
83 |
+
# # drop blank lines
|
84 |
+
text = '\n'.join(chunk for chunk in chunks if chunk)
|
85 |
+
|
86 |
+
## We split this article into paragraphs and then every paragraph into sentences
|
87 |
+
paragraphs = []
|
88 |
+
for paragraph in text.replace('\n',' ').split("\n\n"):
|
89 |
+
if len(paragraph.strip()) > 0:
|
90 |
+
paragraphs.append(sent_tokenize(paragraph.strip()))
|
91 |
+
|
92 |
+
#We combine up to 3 sentences into a passage. You can choose smaller or larger values for window_size
|
93 |
+
#Smaller value: Context from other sentences might get lost
|
94 |
+
#Lager values: More context from the paragraph remains, but results are longer
|
95 |
+
window_size = window_size
|
96 |
+
passages = []
|
97 |
+
for paragraph in paragraphs:
|
98 |
+
for start_idx in range(0, len(paragraph), window_size):
|
99 |
+
end_idx = min(start_idx+window_size, len(paragraph))
|
100 |
+
passages.append(" ".join(paragraph[start_idx:end_idx]))
|
101 |
+
|
102 |
+
print(f"Sentences: {sum([len(p) for p in paragraphs])}")
|
103 |
+
print(f"Passages: {len(passages)}")
|
104 |
+
|
105 |
+
return passages
|
106 |
+
|
107 |
+
@st.experimental_memo(suppress_st_warning=True)
|
108 |
+
def chunk_clean_text(text):
|
109 |
+
|
110 |
+
"""Chunk text longer than 500 tokens"""
|
111 |
+
|
112 |
+
article = nlp(text)
|
113 |
+
sentences = [i.text for i in list(article.sents)]
|
114 |
+
|
115 |
+
current_chunk = 0
|
116 |
+
chunks = []
|
117 |
+
|
118 |
+
for sentence in sentences:
|
119 |
+
if len(chunks) == current_chunk + 1:
|
120 |
+
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
|
121 |
+
chunks[current_chunk].extend(sentence.split(" "))
|
122 |
+
else:
|
123 |
+
current_chunk += 1
|
124 |
+
chunks.append(sentence.split(" "))
|
125 |
+
else:
|
126 |
+
chunks.append(sentence.split(" "))
|
127 |
+
|
128 |
+
for chunk_id in range(len(chunks)):
|
129 |
+
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
130 |
+
|
131 |
+
return chunks
|
132 |
+
|
133 |
+
def summary_downloader(raw_text):
|
134 |
+
|
135 |
+
b64 = base64.b64encode(raw_text.encode()).decode()
|
136 |
+
new_filename = "new_text_file_{}_.txt".format(time_str)
|
137 |
+
st.markdown("#### Download Summary as a File ###")
|
138 |
+
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
|
139 |
+
st.markdown(href,unsafe_allow_html=True)
|
140 |
+
|
141 |
+
def get_all_entities_per_sentence(text):
|
142 |
+
doc = nlp(''.join(text))
|
143 |
+
|
144 |
+
sentences = list(doc.sents)
|
145 |
+
|
146 |
+
entities_all_sentences = []
|
147 |
+
for sentence in sentences:
|
148 |
+
entities_this_sentence = []
|
149 |
+
|
150 |
+
# SPACY ENTITIES
|
151 |
+
for entity in sentence.ents:
|
152 |
+
entities_this_sentence.append(str(entity))
|
153 |
+
|
154 |
+
# FLAIR ENTITIES (CURRENTLY NOT USED)
|
155 |
+
# sentence_entities = Sentence(str(sentence))
|
156 |
+
# tagger.predict(sentence_entities)
|
157 |
+
# for entity in sentence_entities.get_spans('ner'):
|
158 |
+
# entities_this_sentence.append(entity.text)
|
159 |
+
|
160 |
+
# XLM ENTITIES
|
161 |
+
entities_xlm = [entity["word"] for entity in ner_model(str(sentence))]
|
162 |
+
for entity in entities_xlm:
|
163 |
+
entities_this_sentence.append(str(entity))
|
164 |
+
|
165 |
+
entities_all_sentences.append(entities_this_sentence)
|
166 |
+
|
167 |
+
return entities_all_sentences
|
168 |
+
|
169 |
+
def get_all_entities(text):
|
170 |
+
all_entities_per_sentence = get_all_entities_per_sentence(text)
|
171 |
+
return list(itertools.chain.from_iterable(all_entities_per_sentence))
|
172 |
+
|
173 |
+
def get_and_compare_entities(article_content,summary_output):
|
174 |
+
|
175 |
+
all_entities_per_sentence = get_all_entities_per_sentence(article_content)
|
176 |
+
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
|
177 |
+
|
178 |
+
all_entities_per_sentence = get_all_entities_per_sentence(summary_output)
|
179 |
+
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))
|
180 |
+
|
181 |
+
matched_entities = []
|
182 |
+
unmatched_entities = []
|
183 |
+
for entity in entities_summary:
|
184 |
+
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
|
185 |
+
matched_entities.append(entity)
|
186 |
+
elif any(
|
187 |
+
np.inner(sentence_embedding_model.encode(entity, show_progress_bar=False),
|
188 |
+
sentence_embedding_model.encode(art_entity, show_progress_bar=False)) > 0.9 for
|
189 |
+
art_entity in entities_article):
|
190 |
+
matched_entities.append(entity)
|
191 |
+
else:
|
192 |
+
unmatched_entities.append(entity)
|
193 |
+
|
194 |
+
matched_entities = list(dict.fromkeys(matched_entities))
|
195 |
+
unmatched_entities = list(dict.fromkeys(unmatched_entities))
|
196 |
+
|
197 |
+
matched_entities_to_remove = []
|
198 |
+
unmatched_entities_to_remove = []
|
199 |
+
|
200 |
+
for entity in matched_entities:
|
201 |
+
for substring_entity in matched_entities:
|
202 |
+
if entity != substring_entity and entity.lower() in substring_entity.lower():
|
203 |
+
matched_entities_to_remove.append(entity)
|
204 |
+
|
205 |
+
for entity in unmatched_entities:
|
206 |
+
for substring_entity in unmatched_entities:
|
207 |
+
if entity != substring_entity and entity.lower() in substring_entity.lower():
|
208 |
+
unmatched_entities_to_remove.append(entity)
|
209 |
+
|
210 |
+
matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove))
|
211 |
+
unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove))
|
212 |
+
|
213 |
+
for entity in matched_entities_to_remove:
|
214 |
+
matched_entities.remove(entity)
|
215 |
+
for entity in unmatched_entities_to_remove:
|
216 |
+
unmatched_entities.remove(entity)
|
217 |
+
|
218 |
+
return matched_entities, unmatched_entities
|
219 |
+
|
220 |
+
def highlight_entities(article_content,summary_output):
|
221 |
+
|
222 |
+
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
|
223 |
+
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
|
224 |
+
markdown_end = "</mark>"
|
225 |
+
|
226 |
+
matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output)
|
227 |
+
|
228 |
+
print(summary_output)
|
229 |
+
|
230 |
+
for entity in matched_entities:
|
231 |
+
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_green + entity + markdown_end,summary_output)
|
232 |
+
|
233 |
+
for entity in unmatched_entities:
|
234 |
+
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_red + entity + markdown_end,summary_output)
|
235 |
+
|
236 |
+
print("")
|
237 |
+
print(summary_output)
|
238 |
+
|
239 |
+
print("")
|
240 |
+
print(summary_output)
|
241 |
+
|
242 |
+
soup = BeautifulSoup(summary_output, features="html.parser")
|
243 |
+
|
244 |
+
return HTML_WRAPPER.format(soup)
|
245 |
+
|
246 |
+
|
247 |
+
def display_df_as_table(model,top_k,score='score'):
|
248 |
+
'''Display the df with text and scores as a table'''
|
249 |
+
|
250 |
+
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
|
251 |
+
df['Score'] = round(df['Score'],2)
|
252 |
+
|
253 |
+
return df
|
254 |
+
|
255 |
+
def make_spans(text,results):
|
256 |
+
results_list = []
|
257 |
+
for i in range(len(results)):
|
258 |
+
results_list.append(results[i]['label'])
|
259 |
+
facts_spans = []
|
260 |
+
facts_spans = list(zip(sent_tokenizer(text),results_list))
|
261 |
+
return facts_spans
|
262 |
+
|
263 |
+
##Fiscal Sentiment by Sentence
|
264 |
+
def fin_ext(text):
|
265 |
+
results = remote_clx(sent_tokenizer(text))
|
266 |
+
return make_spans(text,results)
|