Update pages/3_Earnings_Semantic_Search_π_.py
Browse files
pages/3_Earnings_Semantic_Search_π_.py
CHANGED
@@ -5,6 +5,10 @@ st.set_page_config(page_title="Earnings Semantic Search", page_icon="π")
|
|
5 |
st.sidebar.header("Semantic Search")
|
6 |
st.markdown("## Earnings Semantic Search with SBert")
|
7 |
|
|
|
|
|
|
|
|
|
8 |
search_input = st.text_input(
|
9 |
label='Enter Your Search Query',value= "What challenges did the business face?", key='search')
|
10 |
|
@@ -13,8 +17,9 @@ top_k = st.sidebar.slider("Number of Top Hits Generated",min_value=1,max_value=5
|
|
13 |
window_size = st.sidebar.slider("Number of Sentences Generated in Search Response",min_value=1,max_value=5,value=3)
|
14 |
|
15 |
if search_input:
|
|
|
16 |
|
17 |
-
if
|
18 |
|
19 |
## Save to a dataframe for ease of visualization
|
20 |
sen_df = st.session_state['sen_df']
|
@@ -44,34 +49,39 @@ if search_input:
|
|
44 |
score='cross-score'
|
45 |
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in hits[0:int(top_k)]],columns=['Score','Text'])
|
46 |
df['Score'] = round(df['Score'],2)
|
|
|
47 |
|
48 |
-
def gen_annotated_text(
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
label =
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
58 |
else:
|
59 |
-
tag_list.append((
|
|
|
60 |
return tag_list
|
61 |
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
first,second = text_to_annotate[0],text_to_annotate[-1]
|
65 |
|
66 |
-
with st.
|
67 |
-
annotated_text(
|
68 |
|
69 |
-
with st.
|
70 |
-
annotated_text(
|
71 |
|
72 |
else:
|
73 |
|
74 |
st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file')
|
|
|
75 |
else:
|
76 |
|
77 |
st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file')
|
|
|
5 |
st.sidebar.header("Semantic Search")
|
6 |
st.markdown("## Earnings Semantic Search with SBert")
|
7 |
|
8 |
+
def gen_sentiment(text):
|
9 |
+
'''Generate sentiment of given text'''
|
10 |
+
return sent_pipe(text)[0]['label']
|
11 |
+
|
12 |
search_input = st.text_input(
|
13 |
label='Enter Your Search Query',value= "What challenges did the business face?", key='search')
|
14 |
|
|
|
17 |
window_size = st.sidebar.slider("Number of Sentences Generated in Search Response",min_value=1,max_value=5,value=3)
|
18 |
|
19 |
if search_input:
|
20 |
+
|
21 |
|
22 |
+
if "sen_df" in st.session_state and "earnings_passages" in st.session_state:
|
23 |
|
24 |
## Save to a dataframe for ease of visualization
|
25 |
sen_df = st.session_state['sen_df']
|
|
|
49 |
score='cross-score'
|
50 |
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in hits[0:int(top_k)]],columns=['Score','Text'])
|
51 |
df['Score'] = round(df['Score'],2)
|
52 |
+
df['Sentiment'] = df.Text.apply(gen_sentiment)
|
53 |
|
54 |
+
def gen_annotated_text(df):
|
55 |
+
'''Generate annotated text'''
|
56 |
+
|
57 |
+
tag_list=[]
|
58 |
+
for row in df.itertuples():
|
59 |
+
label = row[3]
|
60 |
+
text = row[2]
|
61 |
+
if label == 'Positive':
|
62 |
+
tag_list.append((text,label,'#8fce00'))
|
63 |
+
elif label == 'Negative':
|
64 |
+
tag_list.append((text,label,'#f44336'))
|
65 |
else:
|
66 |
+
tag_list.append((text,label,'#fff2cc'))
|
67 |
+
|
68 |
return tag_list
|
69 |
|
70 |
+
text_annotations = gen_annotated_text(df)
|
71 |
+
|
72 |
+
first, second = text_annotations[0], text_annotations[1]
|
73 |
|
|
|
74 |
|
75 |
+
with st.expander(label='Best Search Query Result', expanded=True):
|
76 |
+
annotated_text(first)
|
77 |
|
78 |
+
with st.expander(label='Alternative Search Query Result'):
|
79 |
+
annotated_text(second)
|
80 |
|
81 |
else:
|
82 |
|
83 |
st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file')
|
84 |
+
|
85 |
else:
|
86 |
|
87 |
st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file')
|