from langchain.prompts.prompt import PromptTemplate from langchain.llms import OpenAI from langchain.chains import ChatVectorDBChain import os from typing import Optional, Tuple import gradio as gr import pickle from threading import Lock with open("vanguard_vectorstore.pkl", "rb") as f: vectorstore = pickle.load(f) print(vectorstore) query = 'What is the benefit of investing in an ETF?' print(vectorstore.similarity_search(query,2)) _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You can assume the question about investing and the investment management industry. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) template = """You are an AI assistant for answering questions about investing and the investment management industry. You are given the following extracted parts of a long document and a question. Provide a conversational answer. If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer. If the question is not about investing, politely inform them that you are tuned to only answer questions about investing and the investment management industry. Question: {question} ========= {context} ========= Answer in Markdown:""" QA_PROMPT = PromptTemplate(template=template, input_variables=["question", "context"]) def get_chain(vectorstore): llm = OpenAI(temperature=0) qa_chain = ChatVectorDBChain.from_llm( llm, vectorstore, qa_prompt=QA_PROMPT, condense_question_prompt=CONDENSE_QUESTION_PROMPT, ) return qa_chain def set_openai_api_key(api_key: str): """Set the api key and return chain. If no api_key, then None is returned. """ if api_key: os.environ["OPENAI_API_KEY"] = api_key chain = get_chain(vectorstore) os.environ["OPENAI_API_KEY"] = "" return chain class ChatWrapper: def __init__(self): self.lock = Lock() def __call__( self, api_key: str, inp: str, history: Optional[Tuple[str, str]], chain ): """Execute the chat functionality.""" self.lock.acquire() try: history = history or [] # If chain is None, that is because no API key was provided. if chain is None: history.append((inp, "Please paste your OpenAI key to use")) return history, history # Set OpenAI key import openai openai.api_key = api_key # Run chain and append input. output = chain({"question": inp, "chat_history": history})["answer"] history.append((inp, output)) except Exception as e: raise e finally: self.lock.release() return history, history chat = ChatWrapper() block = gr.Blocks(css=".gradio-container {background-color: lightgray}") with block: with gr.Row(): gr.Markdown("