nickmuchi commited on
Commit
5979534
·
1 Parent(s): fd6baf3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -1
app.py CHANGED
@@ -1,7 +1,6 @@
1
  from sentence_transformers import SentenceTransformer, util, CrossEncoder
2
  from datasets import load_dataset
3
  import pandas as pd
4
- from IPython.display import display
5
 
6
  #Get the netflix dataset
7
  netflix = load_dataset('hugginglearners/netflix-shows',use_auth_token=True)
@@ -20,6 +19,15 @@ dataset_embeddings = torch.from_numpy(flix_ds["train"].to_pandas().to_numpy()).t
20
  #load cross-encoder for reranking
21
  cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
22
 
 
 
 
 
 
 
 
 
 
23
  #function for generating similarity of query and netflix shows
24
  def semantic_search(query,embeddings,top_k=top_k):
25
  '''Encode query and check similarity with embeddings'''
 
1
  from sentence_transformers import SentenceTransformer, util, CrossEncoder
2
  from datasets import load_dataset
3
  import pandas as pd
 
4
 
5
  #Get the netflix dataset
6
  netflix = load_dataset('hugginglearners/netflix-shows',use_auth_token=True)
 
19
  #load cross-encoder for reranking
20
  cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
21
 
22
+ def display_df_as_table(model,top_k,score='score'):
23
+ # Display the df with text and scores as a table
24
+ df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
25
+ df['Score'] = round(df['Score'],2)
26
+ df = df.merge(netflix_df,how='inner',left_on='Text',right_on='description')
27
+ df.drop('Text',inplace=True,axis=1)
28
+
29
+ return df
30
+
31
  #function for generating similarity of query and netflix shows
32
  def semantic_search(query,embeddings,top_k=top_k):
33
  '''Encode query and check similarity with embeddings'''