Spaces:
Build error
Build error
Update variables.py
Browse files- variables.py +73 -0
variables.py
CHANGED
@@ -1,6 +1,79 @@
|
|
1 |
##Variables
|
2 |
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
CONFIG = {
|
6 |
"bearer_token": os.environ.get("bearer_token")
|
|
|
1 |
##Variables
|
2 |
|
3 |
import os
|
4 |
+
import streamlit as st
|
5 |
+
import pathlib
|
6 |
+
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.vectorstores import FAISS
|
10 |
+
from langchain.chat_models.openai import ChatOpenAI
|
11 |
+
from langchain import VectorDBQA
|
12 |
+
import pandas as pd
|
13 |
+
|
14 |
+
from langchain.chat_models import ChatOpenAI
|
15 |
+
from langchain.prompts.chat import (
|
16 |
+
ChatPromptTemplate,
|
17 |
+
SystemMessagePromptTemplate,
|
18 |
+
AIMessagePromptTemplate,
|
19 |
+
HumanMessagePromptTemplate,
|
20 |
+
)
|
21 |
+
from langchain.schema import (
|
22 |
+
AIMessage,
|
23 |
+
HumanMessage,
|
24 |
+
SystemMessage
|
25 |
+
)
|
26 |
+
|
27 |
+
@st.experimental_singleton(suppress_st_warning=True)
|
28 |
+
def get_latest_file():
|
29 |
+
'''Get the latest file from output folder'''
|
30 |
+
|
31 |
+
# set the directory path
|
32 |
+
directory_path = "output/"
|
33 |
+
|
34 |
+
# create a list of all text files in the directory and sort by modification time
|
35 |
+
text_files = sorted(pathlib.Path(directory_path).glob("*.txt"), key=lambda f: f.stat().st_mtime)
|
36 |
+
|
37 |
+
# get the latest modified file
|
38 |
+
latest_file = text_files[-1]
|
39 |
+
|
40 |
+
# open the file and read its contents
|
41 |
+
with open(latest_file, "r") as f:
|
42 |
+
file_contents = f.read()
|
43 |
+
|
44 |
+
return file_contents
|
45 |
+
|
46 |
+
@st.experimental_singleton(suppress_st_warning=True)
|
47 |
+
def process_tweets(file,embed_model,query):
|
48 |
+
'''Process file with latest tweets'''
|
49 |
+
|
50 |
+
# Split tweets int chunks
|
51 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
52 |
+
texts = text_splitter.split_text(file)
|
53 |
+
|
54 |
+
model = bi_enc_dict[embed_model]
|
55 |
+
|
56 |
+
if model == "hkunlp/instructor-large":
|
57 |
+
emb = HuggingFaceInstructEmbeddings(model_name=model,
|
58 |
+
query_instruction='Represent the Financial question for retrieving supporting documents: ',
|
59 |
+
embed_instruction='Represent the Financial document for retrieval: ')
|
60 |
+
|
61 |
+
elif model == "sentence-transformers/all-mpnet-base-v2":
|
62 |
+
emb = HuggingFaceEmbeddings(model_name=model)
|
63 |
+
|
64 |
+
docsearch = FAISS.from_texts(texts, emb)
|
65 |
+
|
66 |
+
chain_type_kwargs = {"prompt": prompt}
|
67 |
+
chain = VectorDBQA.from_chain_type(
|
68 |
+
ChatOpenAI(temperature=0),
|
69 |
+
chain_type="stuff",
|
70 |
+
vectorstore=docsearch,
|
71 |
+
chain_type_kwargs=chain_type_kwargs
|
72 |
+
)
|
73 |
+
|
74 |
+
result = chain({"query": query}, return_only_outputs=True)
|
75 |
+
|
76 |
+
return result
|
77 |
|
78 |
CONFIG = {
|
79 |
"bearer_token": os.environ.get("bearer_token")
|