Spaces:
Running
Running
File size: 11,329 Bytes
c4c7cee cf60dfb c4c7cee cf60dfb c4c7cee cf60dfb c4c7cee cf60dfb c4c7cee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import torch
import random
import string
from transformers import AutoTokenizer, T5EncoderModel
from models.pretrained_models import Plonk
from models.samplers.riemannian_flow_sampler import riemannian_flow_sampler
from models.postprocessing import CartesiantoGPS
from models.schedulers import (
SigmoidScheduler,
LinearScheduler,
CosineScheduler,
)
from models.preconditioning import DDPMPrecond
from torchvision import transforms
from transformers import CLIPProcessor, CLIPVisionModel
from utils.image_processing import CenterCrop
import numpy as np
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
MODELS = {
"nicolas-dufour/PLONK_YFCC": {"emb_name": "dinov2"},
"nicolas-dufour/PLONK_OSV_5M": {
"emb_name": "street_clip",
},
"nicolas-dufour/PLONK_iNaturalist": {
"emb_name": "dinov2",
},
}
def scheduler_fn(
scheduler_type: str, start: float, end: float, tau: float, clip_min: float = 1e-9
):
if scheduler_type == "sigmoid":
return SigmoidScheduler(start, end, tau, clip_min)
elif scheduler_type == "cosine":
return CosineScheduler(start, end, tau, clip_min)
elif scheduler_type == "linear":
return LinearScheduler(clip_min=clip_min)
else:
raise ValueError(f"Scheduler type {scheduler_type} not supported")
class DinoV2FeatureExtractor:
def __init__(self, device=device):
super().__init__()
self.device = device
self.emb_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vitl14_reg")
self.emb_model.eval()
self.emb_model.to(self.device)
self.augmentation = transforms.Compose(
[
CenterCrop(ratio="1:1"),
transforms.Resize(
336, interpolation=transforms.InterpolationMode.BICUBIC
),
transforms.ToTensor(),
transforms.Normalize(
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
),
]
)
def __call__(self, batch):
embs = []
with torch.no_grad():
for img in batch["img"]:
emb = self.emb_model(
self.augmentation(img).unsqueeze(0).to(self.device)
).squeeze(0)
embs.append(emb)
batch["emb"] = torch.stack(embs)
return batch
class StreetClipFeatureExtractor:
def __init__(self, device=device):
self.device = device
self.emb_model = CLIPVisionModel.from_pretrained("geolocal/StreetCLIP").to(
device
)
self.processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP")
def __call__(self, batch):
inputs = self.processor(images=batch["img"], return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.emb_model(**inputs)
embeddings = outputs.last_hidden_state[:, 0]
batch["emb"] = embeddings
return batch
def load_prepocessing(model_name, dtype=torch.float32):
if MODELS[model_name]["emb_name"] == "dinov2":
return DinoV2FeatureExtractor()
elif MODELS[model_name]["emb_name"] == "street_clip":
return StreetClipFeatureExtractor()
else:
raise ValueError(f"Embedding model {MODELS[model_name]['emb_name']} not found")
class PlonkPipeline:
"""
The CADT2IPipeline class is designed to facilitate the generation of images from text prompts using a pre-trained CAD model.
It integrates various components such as samplers, schedulers, and post-processing techniques to produce high-quality images.
Initialization:
CADT2IPipeline(
model_path,
sampler="ddim",
scheduler="sigmoid",
postprocessing="sd_1_5_vae",
scheduler_start=-3,
scheduler_end=3,
scheduler_tau=1.1,
device="cuda",
)
Parameters:
model_path (str): Path to the pre-trained CAD model.
sampler (str): The sampling method to use. Options are "ddim", "ddpm", "dpm", "dpm_2S", "dpm_2M". Default is "ddim".
scheduler (str): The scheduler type to use. Options are "sigmoid", "cosine", "linear". Default is "sigmoid".
postprocessing (str): The post-processing method to use. Options are "consistency-decoder", "sd_1_5_vae". Default is "sd_1_5_vae".
scheduler_start (float): Start value for the scheduler. Default is -3.
scheduler_end (float): End value for the scheduler. Default is 3.
scheduler_tau (float): Tau value for the scheduler. Default is 1.1.
device (str): Device to run the model on. Default is "cuda".
Methods:
model(*args, **kwargs):
Runs the preconditioning on the network with the provided arguments.
__call__(...):
Generates images based on the provided conditions and parameters.
Parameters:
cond (str or list of str): The conditioning text or list of texts.
num_samples (int, optional): Number of samples to generate. If not provided, it is inferred from cond.
x_N (torch.Tensor, optional): Initial noise tensor. If not provided, it is generated.
latents (torch.Tensor, optional): Previous latents.
num_steps (int, optional): Number of steps for the sampler. If not provided, the default is used.
sampler (callable, optional): Custom sampler function. If not provided, the default sampler is used.
scheduler (callable, optional): Custom scheduler function. If not provided, the default scheduler is used.
cfg (float): Classifier-free guidance scale. Default is 15.
guidance_type (str): Type of guidance. Default is "constant".
guidance_start_step (int): Step to start guidance. Default is 0.
generator (torch.Generator, optional): Random number generator.
coherence_value (float): Doherence value for sampling. Default is 1.0.
uncoherence_value (float): Uncoherence value for sampling. Default is 0.0.
unconfident_prompt (str, optional): Unconfident prompt text.
thresholding_type (str): Type of thresholding. Default is "clamp".
clamp_value (float): Clamp value for thresholding. Default is 1.0.
thresholding_percentile (float): Percentile for thresholding. Default is 0.995.
Returns:
torch.Tensor: The generated image tensor after post-processing.
to(device):
Moves the model and its components to the specified device.
Parameters:
device (str): The device to move the model to (e.g., "cuda", "cpu").
Returns:
CADT2IPipeline: The pipeline instance with updated device.
Example Usage:
pipe = CADT2IPipeline(
"nicolas-dufour/",
)
pipe.to("cuda")
image = pipe(
"a beautiful landscape with a river and mountains",
num_samples=4,
)
"""
def __init__(
self,
model_path,
scheduler="sigmoid",
scheduler_start=-7,
scheduler_end=3,
scheduler_tau=1.0,
device=device,
):
self.network = Plonk.from_pretrained(model_path).to(device)
self.network.requires_grad_(False).eval()
assert scheduler in [
"sigmoid",
"cosine",
"linear",
], f"Scheduler {scheduler} not supported"
self.scheduler = scheduler_fn(
scheduler, scheduler_start, scheduler_end, scheduler_tau
)
self.cond_preprocessing = load_prepocessing(model_name=model_path)
self.postprocessing = CartesiantoGPS()
self.sampler = riemannian_flow_sampler
self.model_path = model_path
self.preconditioning = DDPMPrecond()
self.device = device
def model(self, *args, **kwargs):
return self.preconditioning(self.network, *args, **kwargs)
def __call__(
self,
images,
batch_size=None,
x_N=None,
num_steps=None,
scheduler=None,
cfg=0,
generator=None,
callback=None,
):
"""Sample from the model given conditioning.
Args:
cond: Conditioning input (image or list of images)
batch_size: Number of samples to generate (inferred from cond if not provided)
x_N: Initial noise tensor (generated if not provided)
num_steps: Number of sampling steps (uses default if not provided)
sampler: Custom sampler function (uses default if not provided)
scheduler: Custom scheduler function (uses default if not provided)
cfg: Classifier-free guidance scale (default 15)
generator: Random number generator
callback: Optional callback function to report progress (step, total_steps)
Returns:
Sampled GPS coordinates after postprocessing
"""
# Set up batch size and initial noise
shape = [3]
if not isinstance(images, list):
images = [images]
if x_N is None:
if batch_size is None:
if isinstance(images, list):
batch_size = len(images)
else:
batch_size = 1
x_N = torch.randn(
batch_size, *shape, device=self.device, generator=generator
)
else:
x_N = x_N.to(self.device)
if x_N.ndim == 3:
x_N = x_N.unsqueeze(0)
batch_size = x_N.shape[0]
# Set up batch with conditioning
batch = {"y": x_N}
batch["img"] = images
batch = self.cond_preprocessing(batch)
if len(images) > 1:
assert len(images) == batch_size
else:
batch["emb"] = batch["emb"].repeat(batch_size, 1)
# Use default sampler/scheduler if not provided
sampler = self.sampler
if scheduler is None:
scheduler = self.scheduler
# Sample from model
if num_steps is None:
num_steps = 16 # Default number of steps
# Create a wrapper for the model that updates progress
def model_with_progress(*args, **kwargs):
step = kwargs.pop('current_step', 0)
if callback:
callback(step, num_steps)
return self.model(*args, **kwargs)
output = sampler(
model_with_progress,
batch,
conditioning_keys="emb",
scheduler=scheduler,
num_steps=num_steps,
cfg_rate=cfg,
generator=generator,
callback=callback,
)
# Apply postprocessing and return
output = self.postprocessing(output)
# To degrees
output = np.degrees(output.detach().cpu().numpy())
return output
def to(self, device):
self.network.to(device)
self.postprocessing.to(device)
self.device = torch.device(device)
return self
|