Spaces:
Running
Running
File size: 13,800 Bytes
c4c7cee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import glob
import json
import logging
import os
import random
from collections import OrderedDict
from multiprocessing import Value
from pathlib import Path
import braceexpand
import numpy as np
import pandas as pd
import torch
import webdataset as wds
from lightning_fabric.utilities.rank_zero import _get_rank
from PIL import Image
from torch.utils.data import Dataset, get_worker_info
from tqdm import tqdm
from webdataset.tariterators import (
base_plus_ext,
tar_file_expander,
url_opener,
valid_sample,
)
from functools import partial
import math
class GPSWebdataset(wds.DataPipeline):
def __init__(
self,
root,
image_transforms=None,
distributed=True,
train=True,
epoch=0,
seed=3407,
embedding_name=None,
return_image=True,
shard_shuffle_size=2000,
shard_shuffle_initial=500,
sample_shuffle_size=5000,
sample_shuffle_initial=1000,
metadata_attributes=[],
):
self.image_transforms = image_transforms
dataset_tar_files = []
# Get a list of all tar files in the directory
if " " in root:
root = root.split(" ")
print(f"Using multiple dataset[s: {root}")
if isinstance(root, str):
tar_files = [f for f in os.listdir(root) if f.endswith(".tar")]
# Sort the list of tar files
tar_files.sort()
first_tar_file = tar_files[0].split(".")[0]
last_tar_file = tar_files[-1].split(".")[0]
for tar_file in tar_files:
dataset_tar_files.append(f"{root}/{tar_file}")
dataset_pattern = f"{root}/{{{first_tar_file}..{last_tar_file}}}.tar"
self.num_samples, _ = get_dataset_size(dataset_pattern)
elif isinstance(root, list):
num_samples = 0
for r in root:
tar_files = [f for f in os.listdir(r) if f.endswith(".tar")]
tar_files.sort()
first_tar_file = tar_files[0].split(".")[0]
last_tar_file = tar_files[-1].split(".")[0]
for tar_file in tar_files:
dataset_tar_files.append(f"{r}/{tar_file}")
num_samples += get_dataset_size(
f"{r}/{{{first_tar_file}..{last_tar_file}}}.tar"
)[0]
self.num_samples = num_samples
else:
raise ValueError(
f"root must be a string or list of strings. Got {type(root)}"
)
rank = _get_rank()
self.shared_epoch = SharedEpoch(epoch)
pipeline = [wds.SimpleShardList(dataset_tar_files)]
if distributed:
if train:
pipeline.extend(
[
detshuffle2(
bufsize=shard_shuffle_size,
initial=shard_shuffle_initial,
seed=seed,
epoch=self.shared_epoch,
),
wds.split_by_node,
wds.split_by_worker,
tarfile_to_samples_nothrow,
wds.shuffle(
bufsize=sample_shuffle_size,
initial=sample_shuffle_initial,
),
]
)
else:
pipeline.extend(
[wds.split_by_node, wds.split_by_worker, tarfile_to_samples_nothrow]
)
else:
if train:
pipeline.extend(
[
wds.shuffle(
bufsize=shard_shuffle_size,
initial=sample_shuffle_initial,
),
wds.split_by_worker,
tarfile_to_samples_nothrow,
wds.shuffle(
bufsize=sample_shuffle_size,
initial=sample_shuffle_initial,
),
]
)
else:
pipeline.extend([wds.split_by_worker, tarfile_to_samples_nothrow])
outputs_transforms = OrderedDict()
outputs_rename = OrderedDict()
if return_image:
outputs_rename["img.jpg"] = "jpg;png;webp;jpeg"
outputs_transforms["img.jpg"] = (
self.image_transforms
if self.image_transforms is not None
else lambda x: x
)
if embedding_name is not None:
outputs_rename[f"emb.npy"] = f"{embedding_name}.npy"
outputs_transforms[f"emb.npy"] = lambda x: torch.from_numpy(x)
if metadata_attributes != []:
for attr in metadata_attributes:
outputs_rename[f"{attr}.json"] = f"json"
outputs_transforms[f"{attr}.json"] = partial(get_attr, attr=attr)
outputs_rename["gps"] = "json"
outputs_transforms["gps"] = get_gps
pipeline.extend(
[
wds.rename(**outputs_rename),
filter_dict_keys(*outputs_rename.keys(), handler=log_and_continue),
]
)
if return_image:
pipeline.append(wds.decode("pilrgb", handler=log_and_continue))
else:
pipeline.append(wds.decode(handler=log_and_continue))
pipeline.extend(
[
wds.map_dict(**outputs_transforms, handler=log_and_continue),
wds.rename(
**{k.split(".")[0]: k for k in outputs_transforms.keys()},
),
]
)
super().__init__(*pipeline)
def __len__(self):
return self.num_samples
def normalize_gps(lat, lon):
"""Used to put all lat lon inside ±90 and ±180."""
lat = (lat + 90) % 360 - 90
if lat > 90:
lat = 180 - lat
lon += 180
lon = (lon + 180) % 360 - 180
return lat, lon
def get_attr(metadata, attr):
# datapoint = json.loads(metadata)
attr_value = metadata[attr]
if isinstance(attr_value, float) and math.isnan(attr_value):
return "NaN"
else:
return attr_value
def get_gps(metadata):
datapoint = json.loads(metadata)
lat, lon = normalize_gps(
float(datapoint["latitude"]), float(datapoint["longitude"])
)
gps = torch.tensor([np.radians(lat), np.radians(lon)], dtype=torch.float)
return gps
def get_dataset_size(shards):
shards_list, _ = expand_urls(shards)
dir_path = os.path.dirname(shards_list[0])
sizes_filename = os.path.join(dir_path, "sizes.json")
if os.path.exists(sizes_filename):
sizes = json.load(open(sizes_filename, "r"))
total_size = sum([int(sizes[os.path.basename(shard)]) for shard in shards_list])
else:
total_size = 0 # num samples undefined
sizes = {}
for shard in tqdm(shards_list):
dataset = wds.WebDataset(shard)
num_samples = sum(1 for _ in dataset)
total_size += num_samples
sizes[os.path.basename(shard)] = num_samples
print(f"Total number of samples: {total_size}")
with open(sizes_filename, "w") as f:
json.dump(sizes, f)
num_shards = len(shards_list)
return total_size, num_shards
def expand_urls(urls, weights=None):
if weights is None:
expanded_urls = wds.shardlists.expand_urls(urls)
return expanded_urls, None
if isinstance(urls, str):
urllist = urls.split("::")
weights = weights.split("::")
assert len(weights) == len(
urllist
), f"Expected the number of data components ({len(urllist)}) and weights({len(weights)}) to match."
weights = [float(weight) for weight in weights]
all_urls, all_weights = [], []
for url, weight in zip(urllist, weights):
expanded_url = list(braceexpand.braceexpand(url))
expanded_weights = [weight for _ in expanded_url]
all_urls.extend(expanded_url)
all_weights.extend(expanded_weights)
return all_urls, all_weights
else:
all_urls = list(urls)
return all_urls, weights
class SharedEpoch:
def __init__(self, epoch: int = 0):
self.shared_epoch = Value("i", epoch)
def set_value(self, epoch):
self.shared_epoch.value = epoch
def get_value(self):
return self.shared_epoch.value
# _SHARD_SHUFFLE_SIZE = 256
# _SHARD_SHUFFLE_INITIAL = 128
# _SAMPLE_SHUFFLE_SIZE = 5000
# _SAMPLE_SHUFFLE_INITIAL = 1000
class detshuffle2(wds.PipelineStage):
def __init__(
self,
bufsize=1000,
initial=100,
seed=0,
epoch=-1,
):
self.bufsize = bufsize
self.initial = initial
self.seed = seed
self.epoch = epoch
def run(self, src):
if isinstance(self.epoch, SharedEpoch):
epoch = self.epoch.get_value()
else:
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
# situation as different workers may wrap at different times (or not at all).
self.epoch += 1
epoch = self.epoch
rng = random.Random()
if self.seed < 0:
# If seed is negative, we use the worker's seed, this will be different across all nodes/workers
seed = pytorch_worker_seed(epoch)
else:
# This seed to be deterministic AND the same across all nodes/workers in each epoch
seed = self.seed + epoch
rng.seed(seed)
return wds.filters._shuffle(src, self.bufsize, self.initial, rng)
def pytorch_worker_seed(increment=0):
"""get dataloader worker seed from pytorch"""
worker_info = get_worker_info()
if worker_info is not None:
# favour using the seed already created for pytorch dataloader workers if it exists
seed = worker_info.seed
if increment:
# space out seed increments so they can't overlap across workers in different iterations
seed += increment * max(1, worker_info.num_workers)
return seed
# fallback to wds rank based seed
return wds.utils.pytorch_worker_seed()
def log_and_continue(exn):
"""Call in an exception handler to ignore any exception, issue a warning, and continue."""
logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.")
return True
def group_by_keys_nothrow(
data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None
):
"""Return function over iterator that groups key, value pairs into samples.
:param keys: function that splits the key into key and extension (base_plus_ext)
:param lcase: convert suffixes to lower case (Default value = True)
"""
current_sample = None
for filesample in data:
assert isinstance(filesample, dict)
fname, value = filesample["fname"], filesample["data"]
prefix, suffix = keys(fname)
if prefix is None:
continue
if lcase:
suffix = suffix.lower()
# FIXME webdataset version throws if suffix in current_sample, but we have a potential for
# this happening in the current LAION400m dataset if a tar ends with same prefix as the next
# begins, rare, but can happen since prefix aren't unique across tar files in that dataset
if (
current_sample is None
or prefix != current_sample["__key__"]
or suffix in current_sample
):
if valid_sample(current_sample):
yield current_sample
current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
if suffixes is None or suffix in suffixes:
current_sample[suffix] = value
if valid_sample(current_sample):
yield current_sample
def tarfile_to_samples_nothrow(src, handler=log_and_continue):
# NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw
streams = url_opener(src, handler=handler)
files = tar_file_expander(streams, handler=handler)
samples = group_by_keys_nothrow(files, handler=handler)
return samples
def filter_no_caption_or_no_image(sample):
has_caption = "txt" in sample
has_image = (
"png" in sample or "jpg" in sample or "jpeg" in sample or "webp" in sample
)
return has_caption and has_image
def filter_metadata(sample, min_image_size, min_clip_score):
metadata = json.loads(sample["json"])
width = metadata["width"]
height = metadata["height"]
clip_score = metadata["clip_score"] / 100
return (
width >= min_image_size
and height >= min_image_size
and clip_score >= min_clip_score
)
def _filter_dict_keys(
data,
*args,
handler=wds.reraise_exception,
missing_is_error=True,
none_is_error=None,
):
"""Convert dict samples to tuples."""
if none_is_error is None:
none_is_error = missing_is_error
if len(args) == 1 and isinstance(args[0], str) and " " in args[0]:
args = args[0].split()
for sample in data:
try:
result = {
f: wds.getfirst(sample, f, missing_is_error=missing_is_error)
for f in args
}
print
if none_is_error and any(x is None for x in result):
raise ValueError(f"to_tuple {args} got {sample.keys()}")
yield result
except Exception as exn:
if handler(exn):
continue
else:
break
filter_dict_keys = wds.pipelinefilter(_filter_dict_keys)
|