Spaces:
Running
Running
File size: 8,553 Bytes
c4c7cee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import torch
def ddpm_sampler(
net,
batch,
conditioning_keys=None,
scheduler=None,
uncond_tokens=None,
num_steps=1000,
cfg_rate=0,
generator=None,
use_confidence_sampling=False,
use_uncond_token=True,
confidence_value=1.0,
unconfidence_value=0.0,
):
if scheduler is None:
raise ValueError("Scheduler must be provided")
x_cur = batch["y"].to(torch.float32)
latents = batch["previous_latents"]
if use_confidence_sampling:
batch["confidence"] = (
torch.ones(x_cur.shape[0], device=x_cur.device) * confidence_value
)
step_indices = torch.arange(num_steps + 1, dtype=torch.float32, device=x_cur.device)
steps = 1 - step_indices / num_steps
gammas = scheduler(steps)
latents_cond = latents_uncond = latents
# dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
dtype = torch.float32
if cfg_rate > 0 and conditioning_keys is not None:
stacked_batch = {}
for key in conditioning_keys:
if f"{key}_mask" in batch:
if use_confidence_sampling and not use_uncond_token:
stacked_batch[f"{key}_mask"] = torch.cat(
[batch[f"{key}_mask"], batch[f"{key}_mask"]], dim=0
)
else:
if (
batch[f"{key}_mask"].shape[1]
> uncond_tokens[f"{key}_mask"].shape[1]
):
uncond_mask = (
torch.zeros_like(batch[f"{key}_mask"])
if batch[f"{key}_mask"].dtype == torch.bool
else torch.ones_like(batch[f"{key}_mask"]) * -torch.inf
)
uncond_mask[:, : uncond_tokens[f"{key}_mask"].shape[1]] = (
uncond_tokens[f"{key}_mask"]
)
else:
uncond_mask = uncond_tokens[f"{key}_mask"]
batch[f"{key}_mask"] = torch.cat(
[
batch[f"{key}_mask"],
torch.zeros(
batch[f"{key}_mask"].shape[0],
uncond_tokens[f"{key}_embeddings"].shape[1]
- batch[f"{key}_mask"].shape[1],
device=batch[f"{key}_mask"].device,
dtype=batch[f"{key}_mask"].dtype,
),
],
dim=1,
)
stacked_batch[f"{key}_mask"] = torch.cat(
[batch[f"{key}_mask"], uncond_mask], dim=0
)
if f"{key}_embeddings" in batch:
if use_confidence_sampling and not use_uncond_token:
stacked_batch[f"{key}_embeddings"] = torch.cat(
[
batch[f"{key}_embeddings"],
batch[f"{key}_embeddings"],
],
dim=0,
)
else:
if (
batch[f"{key}_embeddings"].shape[1]
> uncond_tokens[f"{key}_embeddings"].shape[1]
):
uncond_tokens[f"{key}_embeddings"] = torch.cat(
[
uncond_tokens[f"{key}_embeddings"],
torch.zeros(
uncond_tokens[f"{key}_embeddings"].shape[0],
batch[f"{key}_embeddings"].shape[1]
- uncond_tokens[f"{key}_embeddings"].shape[1],
uncond_tokens[f"{key}_embeddings"].shape[2],
device=uncond_tokens[f"{key}_embeddings"].device,
),
],
dim=1,
)
elif (
batch[f"{key}_embeddings"].shape[1]
< uncond_tokens[f"{key}_embeddings"].shape[1]
):
batch[f"{key}_embeddings"] = torch.cat(
[
batch[f"{key}_embeddings"],
torch.zeros(
batch[f"{key}_embeddings"].shape[0],
uncond_tokens[f"{key}_embeddings"].shape[1]
- batch[f"{key}_embeddings"].shape[1],
batch[f"{key}_embeddings"].shape[2],
device=batch[f"{key}_embeddings"].device,
),
],
dim=1,
)
stacked_batch[f"{key}_embeddings"] = torch.cat(
[
batch[f"{key}_embeddings"],
uncond_tokens[f"{key}_embeddings"],
],
dim=0,
)
elif key not in batch:
raise ValueError(f"Key {key} not in batch")
else:
if isinstance(batch[key], torch.Tensor):
if use_confidence_sampling and not use_uncond_token:
stacked_batch[key] = torch.cat([batch[key], batch[key]], dim=0)
else:
stacked_batch[key] = torch.cat(
[batch[key], uncond_tokens], dim=0
)
elif isinstance(batch[key], list):
if use_confidence_sampling and not use_uncond_token:
stacked_batch[key] = [*batch[key], *batch[key]]
else:
stacked_batch[key] = [*batch[key], *uncond_tokens]
else:
raise ValueError(
"Conditioning must be a tensor or a list of tensors"
)
if use_confidence_sampling:
stacked_batch["confidence"] = torch.cat(
[
torch.ones(x_cur.shape[0], device=x_cur.device) * confidence_value,
torch.ones(x_cur.shape[0], device=x_cur.device)
* unconfidence_value,
],
dim=0,
)
for step, (gamma_now, gamma_next) in enumerate(zip(gammas[:-1], gammas[1:])):
with torch.cuda.amp.autocast(dtype=dtype):
if cfg_rate > 0 and conditioning_keys is not None:
stacked_batch["y"] = torch.cat([x_cur, x_cur], dim=0)
stacked_batch["gamma"] = gamma_now.expand(x_cur.shape[0] * 2)
stacked_batch["previous_latents"] = (
torch.cat([latents_cond, latents_uncond], dim=0)
if latents is not None
else None
)
denoised_all, latents_all = net(stacked_batch)
denoised_cond, denoised_uncond = denoised_all.chunk(2, dim=0)
latents_cond, latents_uncond = latents_all.chunk(2, dim=0)
denoised = denoised_cond * (1 + cfg_rate) - denoised_uncond * cfg_rate
else:
batch["y"] = x_cur
batch["gamma"] = gamma_now.expand(x_cur.shape[0])
batch["previous_latents"] = latents
denoised, latents = net(
batch,
)
x_pred = (x_cur - torch.sqrt(1 - gamma_now) * denoised) / torch.sqrt(gamma_now)
x_pred = torch.clamp(x_pred, -1, 1)
noise_pred = (x_cur - torch.sqrt(gamma_now) * x_pred) / torch.sqrt(
1 - gamma_now
)
log_alpha_t = torch.log(gamma_now) - torch.log(gamma_next)
alpha_t = torch.clip(torch.exp(log_alpha_t), 0, 1)
x_mean = torch.rsqrt(alpha_t) * (
x_cur - torch.rsqrt(1 - gamma_now) * (1 - alpha_t) * noise_pred
)
var_t = 1 - alpha_t
eps = torch.randn(x_cur.shape, device=x_cur.device, generator=generator)
x_next = x_mean + torch.sqrt(var_t) * eps
x_cur = x_next
return x_cur.to(torch.float32)
|