Plonk / data /data.py
nicolas-dufour's picture
squash: merge all unpushed commits
c4c7cee
raw
history blame
25.8 kB
import numpy as np
import pandas as pd
import torch
import random
import pickle
from os.path import join
from os.path import isfile
from PIL import Image
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset
from torchvision.transforms import (
Compose,
RandomCrop,
CenterCrop,
RandomHorizontalFlip,
ToTensor,
)
import time
from torchvision.transforms import GaussianBlur
from torchvision import transforms
from pathlib import Path
import json
from tqdm import tqdm
import multiprocessing as mp
import ctypes
def normalize(lat, lon):
"""Used to put all lat lon inside ±90 and ±180."""
lat = (lat + 90) % 360 - 90
if lat > 90:
lat = 180 - lat
lon += 180
lon = (lon + 180) % 360 - 180
return lat, lon
def collate_fn(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
keys = list(batch[0].keys())
if "weight" in batch[0].keys():
keys.remove("weight")
output = {}
for key in [
"idx",
"unique_country",
"unique_region",
"unique_sub-region",
"unique_city",
"img_idx",
"text",
]:
if key in keys:
idx = [x[key] for x in batch]
output[key] = idx
keys.remove(key)
if "img" in keys and isinstance(batch[0]["img"], Image.Image):
output["img"] = [x["img"] for x in batch]
keys.remove("img")
for key in keys:
if not ("text" in key):
output[key] = torch.stack([x[key] for x in batch])
return output
def collate_fn_streetclip(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
keys = list(batch[0].keys())
if "weight" in batch[0].keys():
keys.remove("weight")
output = {}
for key in [
"idx",
"unique_country",
"unique_region",
"unique_sub-region",
"unique_city",
"img_idx",
"img",
"text",
]:
if key in keys:
idx = [x[key] for x in batch]
output[key] = idx
keys.remove(key)
for key in keys:
if not ("text" in key):
output[key] = torch.stack([x[key] for x in batch])
return output
def collate_fn_denstity(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
keys = list(batch[0].keys())
if "weight" in batch[0].keys():
keys.remove("weight")
# Sample indices based on the weights
weights = np.array([x["weight"] for x in batch])
normalized_weights = weights / np.sum(weights)
sampled_indices = np.random.choice(
len(batch), size=len(batch), p=normalized_weights, replace=True
)
output = {}
for key in [
"idx",
"unique_country",
"unique_region",
"unique_sub-region",
"unique_city",
"img_idx",
"text",
]:
if key in keys:
idx = [batch[i][key] for i in sampled_indices]
output[key] = idx
keys.remove(key)
for key in keys:
if not ("text" in key):
output[key] = torch.stack([batch[i][key] for i in sampled_indices])
return output
def collate_fn_streetclip_denstity(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
keys = list(batch[0].keys())
if "weight" in batch[0].keys():
keys.remove("weight")
# Sample indices based on the weights
weights = np.array([x["weight"] for x in batch])
normalized_weights = weights / np.sum(weights)
sampled_indices = np.random.choice(
len(batch), size=len(batch), p=normalized_weights, replace=True
)
output = {}
for key in [
"idx",
"unique_country",
"unique_region",
"unique_sub-region",
"unique_city",
"img_idx",
"img",
"text",
]:
if key in keys:
idx = [batch[i][key] for i in sampled_indices]
output[key] = idx
keys.remove(key)
for key in keys:
if not ("text" in key):
output[key] = torch.stack([batch[i][key] for i in sampled_indices])
return output
def collate_fn_contrastive(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
output = collate_fn(batch)
pos_img = torch.stack([x["pos_img"] for x in batch])
output["pos_img"] = pos_img
return output
def collate_fn_contrastive_density(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
keys = list(batch[0].keys())
if "weight" in batch[0].keys():
keys.remove("weight")
# Sample indices based on the weights
weights = np.array([x["weight"] for x in batch])
normalized_weights = weights / np.sum(weights)
sampled_indices = np.random.choice(
len(batch), size=len(batch), p=normalized_weights, replace=True
)
output = {}
for key in [
"idx",
"unique_country",
"unique_region",
"unique_sub-region",
"unique_city",
"img_idx",
]:
if key in keys:
idx = [batch[i][key] for i in sampled_indices]
output[key] = idx
keys.remove(key)
for key in keys:
if not ("text" in key):
output[key] = torch.stack([batch[i][key] for i in sampled_indices])
return output
class iNaturalist(Dataset):
def __init__(
self,
path,
transforms,
split="train",
output_type="image",
embedding_name="dinov2",
):
super().__init__()
self.split = split
with open(Path(path) / f"{split}.json", "r") as f:
self.metadata = json.load(f)
self.metadata = [
datapoint
for datapoint in self.metadata["images"]
if "latitude" in datapoint and datapoint["latitude"] is not None
]
self.path = path
self.transforms = transforms
self.output_type = output_type
self.embedding_name = embedding_name
self.collate_fn = collate_fn
def __getitem__(self, i):
output = {}
if "image" in self.output_type:
image_path = Path(self.path) / "images" / self.metadata[i]["file_name"]
img = self.transforms(Image.open(image_path))
output["img"] = img
if "emb" in self.output_type:
emb_path = (
Path(self.path)
/ "embeddings"
/ self.embedding_name
/ self.metadata[i]["file_name"].replace(".jpg", ".npy")
)
output["emb"] = torch.tensor(np.load(emb_path))
lat, lon = normalize(
self.metadata[i]["latitude"], self.metadata[i]["longitude"]
)
output["gps"] = torch.tensor(
[np.radians(lat), np.radians(lon)], dtype=torch.float
)
output["idx"] = i
output["img_idx"] = self.metadata[i]["id"]
return output
def __len__(self):
return len(self.metadata)
class OSV5M(Dataset):
csv_dtype = {"category": str, "country": str, "city": str} # Don't remove.
def __init__(
self,
path,
transforms,
split="train",
class_name=None,
aux_data=[],
is_baseline=False,
areas=["country", "region", "sub-region", "city"],
streetclip=False,
suff="",
blur=False,
output_type="image",
embedding_name="dinov2",
):
"""Initializes the dataset.
Args:
path (str): path to the dataset
transforms (torchvision.transforms): transforms to apply to the images
split (str): split to use (train, val, test)
class_name (str): category to use (e.g. "city")
aux_data (list of str): auxilliary datas to use
areas (list of str): regions to perform accuracy
streetclip (bool): if the model is streetclip, do not use transform
suff (str): suffix of test csv
blur (bool): blur bottom of images or not
output_type (str): type of output (image or emb)
"""
self.suff = suff
self.path = path
self.aux = len(aux_data) > 0
self.aux_list = aux_data
self.split = split
if split == "select":
self.df = self.load_split(split)
split = "test"
else:
self.df = self.load_split(split)
self.split = split
if "image" in output_type:
self.image_data_folder = join(
path,
"images",
("train" if split == "val" else split),
)
self.image_dict_names = {}
for root, _, files in os.walk(self.image_data_folder):
for file in files:
self.image_dict_names[file] = os.path.join(root, file)
if "emb" in output_type:
self.emb_data_folder = join(
path,
"embeddings",
embedding_name,
("train" if split == "val" else split),
)
self.emb_dict_names = {}
for root, _, files in os.walk(self.emb_data_folder):
for file in files:
self.emb_dict_names[file] = os.path.join(root, file)
self.output_type = output_type
self.is_baseline = is_baseline
if self.aux:
self.aux_data = {}
for col in self.aux_list:
if col in ["land_cover", "climate", "soil"]:
self.aux_data[col] = pd.get_dummies(self.df[col], dtype=float)
if col == "climate":
for i in range(31):
if not (i in list(self.aux_data[col].columns)):
self.aux_data[col][i] = 0
desired_order = [i for i in range(31)]
desired_order.remove(20)
self.aux_data[col] = self.aux_data[col][desired_order]
else:
self.aux_data[col] = self.df[col].apply(lambda x: [x])
self.areas = ["_".join(["unique", area]) for area in areas]
if class_name is None:
self.class_name = class_name
elif "quadtree" in class_name:
self.class_name = class_name
else:
self.class_name = "_".join(["unique", class_name])
ex = self.extract_classes(self.class_name)
self.df = self.df[
["id", "latitude", "longitude", "weight"] + self.areas + ex
].fillna("NaN")
if self.class_name in self.areas:
self.df.columns = list(self.df.columns)[:-1] + [self.class_name + "_2"]
self.transforms = transforms
self.collate_fn = collate_fn
self.collate_fn_density = collate_fn_denstity
self.blur = blur
self.streetclip = streetclip
if self.streetclip:
self.collate_fn = collate_fn_streetclip
self.collate_fn_density = collate_fn_streetclip_denstity
def load_split(self, split):
"""Returns a new dataset with the given split."""
start_time = time.time()
if split == "test":
df = pd.read_csv(join(self.path, "test.csv"), dtype=self.csv_dtype)
# extract coord
longitude = df["longitude"].values
latitude = df["latitude"].values
# Create bins
num_bins = 100
lon_bins = np.linspace(longitude.min(), longitude.max(), num_bins)
lat_bins = np.linspace(latitude.min(), latitude.max(), num_bins)
# compute density and weights
hist, _, _ = np.histogram2d(longitude, latitude, bins=[lon_bins, lat_bins])
weights = 1.0 / np.power(hist[df["lon_bin"], df["lat_bin"]], 0.75)
normalized_weights = weights / np.sum(weights)
df["weight"] = normalized_weights
return df
elif split == "select":
df = pd.read_csv(join(self.path, "select.csv"), dtype=self.csv_dtype)
# extract coord
longitude = df["longitude"].values
latitude = df["latitude"].values
# Create bins
num_bins = 100
lon_bins = np.linspace(longitude.min(), longitude.max(), num_bins)
lat_bins = np.linspace(latitude.min(), latitude.max(), num_bins)
# compute density and weights
hist, _, _ = np.histogram2d(longitude, latitude, bins=[lon_bins, lat_bins])
weights = 1.0 / np.power(hist[df["lon_bin"], df["lat_bin"]], 0.75)
normalized_weights = weights / np.sum(weights)
df["weight"] = normalized_weights
return df
else:
if len(self.suff) == 0:
df = pd.read_csv(join(self.path, "train.csv"), dtype=self.csv_dtype)
else:
df = pd.read_csv(
join(self.path, "train" + "_" + self.suff + ".csv"),
dtype=self.csv_dtype,
)
# extract coord
longitude = df["longitude"].values
latitude = df["latitude"].values
# Create bins
num_bins = 100
lon_bins = np.linspace(longitude.min(), longitude.max(), num_bins)
lat_bins = np.linspace(latitude.min(), latitude.max(), num_bins)
# compute density and weights
hist, _, _ = np.histogram2d(longitude, latitude, bins=[lon_bins, lat_bins])
weights = 1.0 / np.power(hist[df["lon_bin"], df["lat_bin"]], 0.75)
normalized_weights = weights / np.sum(weights)
df["weight"] = normalized_weights
test_df = df.sample(
n=int(0.1 * len(df)),
weights=normalized_weights,
replace=False,
random_state=42,
)
end_time = time.time()
print(f"Loading {split} dataset took {(end_time - start_time):.2f} seconds")
if split == "val":
return test_df
else:
return df.drop(test_df.index)
def extract_classes(self, tag=None):
"""Extracts the categories from the dataset."""
if tag is None:
self.has_labels = False
return []
splits = ["train", "test"] if self.is_baseline else ["train"]
# splits = ["train", "test"]
print(f"Loading categories from {splits}")
# concatenate all categories from relevant splits to find the unique ones.
self.categories = sorted(
pd.concat(
[pd.read_csv(join(self.path, f"{split}.csv"))[tag] for split in splits]
)
.fillna("NaN")
.unique()
.tolist()
)
if "NaN" in self.categories:
self.categories.remove("NaN")
if self.split != "test":
self.df = self.df.dropna(subset=[tag])
# compute the total number of categories - this name is fixed and will be used as a lookup during init
self.num_classes = len(self.categories)
# create a mapping from category to index
self.category_to_index = {
category: i for i, category in enumerate(self.categories)
}
self.has_labels = True
return [tag]
def __getitem__(self, i):
"""Returns an item from the dataset.
Args:
i (int): index of the item
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
x = list(self.df.iloc[i]) # id, latitude, longitude, {category}
output = {}
if "image" in self.output_type:
if self.streetclip:
img = Image.open(self.image_dict_names[f"{int(x[0])}.jpg"])
elif self.blur:
img = transforms.ToTensor()(
Image.open(self.image_dict_names[f"{int(x[0])}.jpg"])
)
u = GaussianBlur(kernel_size=13, sigma=2.0)
bottom_part = img[:, -14:, :].unsqueeze(0)
blurred_bottom = u(bottom_part)
img[:, -14:, :] = blurred_bottom.squeeze()
img = self.transforms(transforms.ToPILImage()(img))
else:
img = self.transforms(
Image.open(self.image_dict_names[f"{int(x[0])}.jpg"])
)
output["img"] = img
if "emb" in self.output_type:
output["emb"] = torch.FloatTensor(
np.load(self.emb_dict_names[f"{int(x[0])}.npy"])
)
lat, lon = normalize(x[1], x[2])
gps = torch.FloatTensor([np.radians(lat), np.radians(lon)]).squeeze(0)
output.update(
{
"gps": gps,
"idx": i,
"img_idx": int(x[0]),
"weight": x[3],
}
)
for count, area in enumerate(self.areas):
output[area] = x[
count + 4
] #'country': x[3], 'region': x[4], 'sub-region': x[5], 'city': x[6]}
if self.has_labels:
if x[-1] in self.categories:
output["label"] = torch.LongTensor(
[self.category_to_index[x[-1]]]
).squeeze(-1)
else:
output["label"] = torch.LongTensor([-1]).squeeze(-1)
if self.aux:
for col in self.aux_list:
output[col] = torch.FloatTensor(self.aux_data[col].iloc[i])
return output
def __len__(self):
return len(self.df)
class ContrastiveOSV5M(OSV5M):
def __init__(
self,
path,
transforms,
split="train",
class_name=None,
aux_data=[],
class_name2=None,
blur=False,
):
"""
class_name2 (str): if not None, we do contrastive an other class than the one specified for classif
"""
super().__init__(
path,
transforms,
split=split,
class_name=class_name,
aux_data=aux_data,
blur=blur,
)
self.add_label = False
if not (class_name2 is None) and split != "test" and split != "select":
self.add_label = True
self.class_name = class_name2
self.extract_classes_contrastive(tag=class_name2)
self.df = self.df.reset_index(drop=True)
self.dict_classes = {
value: indices.tolist()
for value, indices in self.df.groupby(self.class_name).groups.items()
}
self.collate_fn = collate_fn_contrastive
self.random_crop = RandomCrop(224) # use when no positive image is available
def sample_positive(self, i):
"""
sample positive image from the same city, country if it is available
otherwise, apply different crop to the image
"""
x = self.df.iloc[i] # id, latitude, longitude, {category}
class_name = x[self.class_name]
idxs = self.dict_classes[class_name]
idxs.remove(i)
if len(idxs) > 0:
idx = random.choice(idxs)
x = self.df.iloc[idx]
pos_img = self.transforms(
Image.open(self.dict_names[f"{int(x['id'])}.jpg"])
)
else:
pos_img = self.random_crop(
self.transforms(Image.open(self.dict_names[f"{int(x['id'])}.jpg"]))
)
return pos_img
def extract_classes_contrastive(self, tag=None):
"""Extracts the categories from the dataset."""
if tag is None:
self.has_labels = False
return []
splits = ["train", "test"] if self.is_baseline else ["train"]
# splits = ["train", "test"]
print(f"Loading categories from {splits}")
# concatenate all categories from relevant splits to find the unique ones.
categories = sorted(
pd.concat(
[pd.read_csv(join(self.path, f"{split}.csv"))[tag] for split in splits]
)
.fillna("NaN")
.unique()
.tolist()
)
# create a mapping from category to index
self.contrastive_category_to_index = {
category: i for i, category in enumerate(categories)
}
def __getitem__(self, i):
output = super().__getitem__(i)
pos_img = self.sample_positive(i)
output["pos_img"] = pos_img
if self.add_label:
output["label_contrastive"] = torch.LongTensor(
[self.contrastive_category_to_index[self.df[self.class_name].iloc[i]]]
).squeeze(-1)
return output
class TextContrastiveOSV5M(OSV5M):
def __init__(
self,
path,
transforms,
split="train",
class_name=None,
aux_data=[],
blur=False,
):
super().__init__(
path,
transforms,
split=split,
class_name=class_name,
aux_data=aux_data,
blur=blur,
)
self.df = self.df.reset_index(drop=True)
def get_text(self, i):
"""
sample positive image from the same city, country if it is available
otherwise, apply different crop to the image
"""
x = self.df.iloc[i] # id, latitude, longitude, {category}
l = [
name.split("_")[-1]
for name in [
x["unique_city"],
x["unique_sub-region"],
x["unique_region"],
x["unique_country"],
]
]
pre = False
sentence = "An image of "
if l[0] != "NaN":
sentence += "the city of "
sentence += l[0]
pre = True
if l[1] != "NaN":
if pre:
sentence += ", in "
sentence += "the area of "
sentence += l[1]
pre = True
if l[2] != "NaN":
if pre:
sentence += ", in "
sentence += "the region of "
sentence += l[2]
pre = True
if l[3] != "NaN":
if pre:
sentence += ", in "
sentence += l[3]
return sentence
def __getitem__(self, i):
output = super().__getitem__(i)
output["text"] = self.get_text(i)
return output
import os
import json
class Baseline(Dataset):
def __init__(
self,
path,
which,
transforms,
):
"""Initializes the dataset.
Args:
path (str): path to the dataset
which (str): which baseline to use (im2gps, im2gps3k)
transforms (torchvision.transforms): transforms to apply to the images
"""
baselines = {
"im2gps": self.load_im2gps,
"im2gps3k": self.load_im2gps,
"yfcc4k": self.load_yfcc4k,
}
self.path = path
self.samples = baselines[which]()
self.transforms = transforms
self.collate_fn = collate_fn
self.class_name = which
def load_im2gps(
self,
):
json_path = join(self.path, "info.json")
with open(json_path) as f:
data = json.load(f)
samples = []
for f in os.listdir(join(self.path, "images")):
if len(data[f]):
lat = float(data[f][-4].replace("latitude: ", ""))
lon = float(data[f][-3].replace("longitude: ", ""))
samples.append((f, lat, lon))
return samples
def load_yfcc4k(
self,
):
samples = []
with open(join(self.path, "info.txt")) as f:
lines = f.readlines()
for line in lines:
x = line.split("\t")
f, lon, lat = x[1], x[12], x[13]
samples.append((f + ".jpg", float(lat), float(lon)))
return samples
def __getitem__(self, i):
"""Returns an item from the dataset.
Args:
i (int): index of the item
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
img_path, lat, lon = self.samples[i]
img = self.transforms(
Image.open(join(self.path, "images", img_path)).convert("RGB")
)
lat, lon = normalize(lat, lon)
gps = torch.FloatTensor([np.radians(lat), np.radians(lon)]).squeeze(0)
return {
"img": img,
"gps": gps,
"idx": i,
}
def __len__(self):
return len(self.samples)
null_transform = lambda x: x