Plonk / scripts /retrieval /backbone.py
nicolas-dufour's picture
squash: merge all unpushed commits
c4c7cee
raw
history blame
4.95 kB
from os.path import join
import PIL
import numpy as np
import pandas as pd
import reverse_geocoder
from torch.utils.data import Dataset
class GeoDataset(Dataset):
def __init__(self, image_folder, annotation_file, transformation, tag="image_id"):
self.image_folder = image_folder
gt = pd.read_csv(annotation_file, dtype={tag: str})
files = set([f.replace(".jpg", "") for f in os.listdir(image_folder)])
gt = gt[gt[tag].isin(files)]
self.processor = transformation
self.gt = [
(g[1][tag], g[1]["latitude"], g[1]["longitude"]) for g in gt.iterrows()
]
self.tag = tag
def fid(self, i):
return self.gt[i][0]
def latlon(self, i):
return self.gt[i][1]
def __len__(self):
return len(self.gt)
def __getitem__(self, idx):
fp = join(self.image_folder, self.gt[idx][0] + ".jpg")
return self.processor(self, idx, fp)
def load_plonk(path):
import hydra
from hydra import initialize, compose
from models.module import DiffGeolocalizer
from omegaconf import OmegaConf, open_dict
from os.path import join
from hydra.utils import instantiate
# load config from path
# make path relative to current_dir
with initialize(version_base=None, config_path="osv5m__best_model"):
cfg = compose(config_name="config", overrides=[])
checkpoint = torch.load(join(path, "last.ckpt"))
del checkpoint["state_dict"][
"model.backbone.clip.vision_model.embeddings.position_ids"
]
torch.save(checkpoint, join(path, "last2.ckpt"))
with open_dict(cfg):
cfg.checkpoint = join(path, "last2.ckpt")
cfg.num_classes = 11399
cfg.model.network.mid.instance.final_dim = cfg.num_classes * 3
cfg.model.network.head.final_dim = cfg.num_classes * 3
cfg.model.network.head.instance.quadtree_path = join(path, "quadtree_10_1000.csv")
cfg.dataset.train_dataset.path = ""
cfg.dataset.val_dataset.path = ""
cfg.dataset.test_dataset.path = ""
cfg.logger.save_dir = ""
cfg.data_dir = ""
cfg.root_dir = ""
cfg.mode = "test"
cfg.model.network.backbone.instance.path = (
"laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K"
)
transform = instantiate(cfg.dataset.test_transform)
model = DiffGeolocalizer.load_from_checkpoint(
join(path, "last2.ckpt"), cfg=cfg.model
)
os.remove(join(path, "last2.ckpt"))
@torch.no_grad()
def inference(model, x):
return x[0], model.model.backbone({"img": x[1].to(model.device)})[:, 0, :].cpu()
def collate_fn(batch):
return [b[0] for b in batch], torch.stack([b[1] for b in batch], dim=0)
def operate(self, idx, fp):
proc = self.processor(PIL.Image.open(fp))
return self.gt[idx][0], proc
return model, operate, inference, collate_fn
def load_clip(which):
# We evaluate on:
# - "openai/clip-vit-base-patch32"
# - "openai/clip-vit-large-patch14-336"
# - "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
# - "laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K"
# - "geolocal/StreetCLIP"
from transformers import CLIPProcessor, CLIPModel
@torch.no_grad()
def inference(model, img):
image_ids = img.data.pop("image_id")
image_input = img.to(model.device)
image_input["pixel_values"] = image_input["pixel_values"].squeeze(1)
features = model.get_image_features(**image_input)
features /= features.norm(dim=-1, keepdim=True)
return image_ids, features.cpu()
processor = CLIPProcessor.from_pretrained(which)
def operate(self, idx, fp):
pil = PIL.Image.open(fp)
proc = processor(images=pil, return_tensors="pt")
proc["image_id"] = self.gt[idx][0]
return proc
return CLIPModel.from_pretrained(which), operate, inference, None
def load_dino(which):
# We evaluate on:
# - 'facebook/dinov2-large'
from transformers import AutoImageProcessor, AutoModel
@torch.no_grad()
def inference(model, img):
image_ids = img.data.pop("image_id")
image_input = img.to(model.device)
image_input["pixel_values"] = image_input["pixel_values"].squeeze(1)
features = model(**image_input).last_hidden_state[:, 0]
features /= features.norm(dim=-1, keepdim=True)
return image_ids, features.cpu()
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-large")
def operate(self, idx, fp):
pil = PIL.Image.open(fp)
proc = processor(images=pil, return_tensors="pt")
proc["image_id"] = self.gt[idx][0]
return proc
return AutoModel.from_pretrained("facebook/dinov2-large"), operate, inference, None
def get_backbone(name):
if os.path.isdir(name):
return load_plonk(name)
elif "clip" in name.lower():
return load_clip(name)
elif "dino" in name.lower():
return load_dino(name)