Spaces:
Running
Running
from os.path import join | |
import PIL | |
import numpy as np | |
import pandas as pd | |
import reverse_geocoder | |
from torch.utils.data import Dataset | |
class GeoDataset(Dataset): | |
def __init__(self, image_folder, annotation_file, transformation, tag="image_id"): | |
self.image_folder = image_folder | |
gt = pd.read_csv(annotation_file, dtype={tag: str}) | |
files = set([f.replace(".jpg", "") for f in os.listdir(image_folder)]) | |
gt = gt[gt[tag].isin(files)] | |
self.processor = transformation | |
self.gt = [ | |
(g[1][tag], g[1]["latitude"], g[1]["longitude"]) for g in gt.iterrows() | |
] | |
self.tag = tag | |
def fid(self, i): | |
return self.gt[i][0] | |
def latlon(self, i): | |
return self.gt[i][1] | |
def __len__(self): | |
return len(self.gt) | |
def __getitem__(self, idx): | |
fp = join(self.image_folder, self.gt[idx][0] + ".jpg") | |
return self.processor(self, idx, fp) | |
def load_plonk(path): | |
import hydra | |
from hydra import initialize, compose | |
from models.module import DiffGeolocalizer | |
from omegaconf import OmegaConf, open_dict | |
from os.path import join | |
from hydra.utils import instantiate | |
# load config from path | |
# make path relative to current_dir | |
with initialize(version_base=None, config_path="osv5m__best_model"): | |
cfg = compose(config_name="config", overrides=[]) | |
checkpoint = torch.load(join(path, "last.ckpt")) | |
del checkpoint["state_dict"][ | |
"model.backbone.clip.vision_model.embeddings.position_ids" | |
] | |
torch.save(checkpoint, join(path, "last2.ckpt")) | |
with open_dict(cfg): | |
cfg.checkpoint = join(path, "last2.ckpt") | |
cfg.num_classes = 11399 | |
cfg.model.network.mid.instance.final_dim = cfg.num_classes * 3 | |
cfg.model.network.head.final_dim = cfg.num_classes * 3 | |
cfg.model.network.head.instance.quadtree_path = join(path, "quadtree_10_1000.csv") | |
cfg.dataset.train_dataset.path = "" | |
cfg.dataset.val_dataset.path = "" | |
cfg.dataset.test_dataset.path = "" | |
cfg.logger.save_dir = "" | |
cfg.data_dir = "" | |
cfg.root_dir = "" | |
cfg.mode = "test" | |
cfg.model.network.backbone.instance.path = ( | |
"laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K" | |
) | |
transform = instantiate(cfg.dataset.test_transform) | |
model = DiffGeolocalizer.load_from_checkpoint( | |
join(path, "last2.ckpt"), cfg=cfg.model | |
) | |
os.remove(join(path, "last2.ckpt")) | |
def inference(model, x): | |
return x[0], model.model.backbone({"img": x[1].to(model.device)})[:, 0, :].cpu() | |
def collate_fn(batch): | |
return [b[0] for b in batch], torch.stack([b[1] for b in batch], dim=0) | |
def operate(self, idx, fp): | |
proc = self.processor(PIL.Image.open(fp)) | |
return self.gt[idx][0], proc | |
return model, operate, inference, collate_fn | |
def load_clip(which): | |
# We evaluate on: | |
# - "openai/clip-vit-base-patch32" | |
# - "openai/clip-vit-large-patch14-336" | |
# - "laion/CLIP-ViT-B-32-laion2B-s34B-b79K" | |
# - "laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K" | |
# - "geolocal/StreetCLIP" | |
from transformers import CLIPProcessor, CLIPModel | |
def inference(model, img): | |
image_ids = img.data.pop("image_id") | |
image_input = img.to(model.device) | |
image_input["pixel_values"] = image_input["pixel_values"].squeeze(1) | |
features = model.get_image_features(**image_input) | |
features /= features.norm(dim=-1, keepdim=True) | |
return image_ids, features.cpu() | |
processor = CLIPProcessor.from_pretrained(which) | |
def operate(self, idx, fp): | |
pil = PIL.Image.open(fp) | |
proc = processor(images=pil, return_tensors="pt") | |
proc["image_id"] = self.gt[idx][0] | |
return proc | |
return CLIPModel.from_pretrained(which), operate, inference, None | |
def load_dino(which): | |
# We evaluate on: | |
# - 'facebook/dinov2-large' | |
from transformers import AutoImageProcessor, AutoModel | |
def inference(model, img): | |
image_ids = img.data.pop("image_id") | |
image_input = img.to(model.device) | |
image_input["pixel_values"] = image_input["pixel_values"].squeeze(1) | |
features = model(**image_input).last_hidden_state[:, 0] | |
features /= features.norm(dim=-1, keepdim=True) | |
return image_ids, features.cpu() | |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-large") | |
def operate(self, idx, fp): | |
pil = PIL.Image.open(fp) | |
proc = processor(images=pil, return_tensors="pt") | |
proc["image_id"] = self.gt[idx][0] | |
return proc | |
return AutoModel.from_pretrained("facebook/dinov2-large"), operate, inference, None | |
def get_backbone(name): | |
if os.path.isdir(name): | |
return load_plonk(name) | |
elif "clip" in name.lower(): | |
return load_clip(name) | |
elif "dino" in name.lower(): | |
return load_dino(name) | |