Spaces:
Running
Running
import sys | |
import os | |
from models.networks.mlp import GeoAdaLNMLP | |
from huggingface_hub import PyTorchModelHubMixin | |
import torch | |
import argparse | |
models_overrides = { | |
"YFCC100M_geoadalnmlp_r3_small_sigmoid_flow_riemann_10M_10M": "YFCC100M_geoadalnmlp_r3_small_sigmoid_flow_riemann", | |
"iNaturalist_geoadalnmlp_r3_small_sigmoid_flow_riemann_-7_3": "iNaturalist_geoadalnmlp_r3_small_sigmoid_flow_riemann", | |
"osv_5m_geoadalnmlp_r3_small_sigmoid_flow_riemann_-7_3": "osv_5m_geoadalnmlp_r3_small_sigmoid_flow_riemann", | |
} | |
class Plonk( | |
GeoAdaLNMLP, | |
PyTorchModelHubMixin, | |
repo_url="https://github.com/nicolas-dufour/plonk", | |
tags=["plonk", "geolocalization", "diffusion"], | |
license="mit", | |
): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def upload_model(checkpoint_dir, repo_name): | |
import hydra | |
from omegaconf import OmegaConf | |
hydra.initialize(version_base=None, config_path=f"../configs") | |
cfg = hydra.compose( | |
config_name="config", | |
overrides=[ | |
f"exp={models_overrides[checkpoint_dir]}", | |
], | |
) | |
network_config = cfg.model.network | |
serialized_network_config = OmegaConf.to_container(network_config, resolve=True) | |
print(serialized_network_config) | |
del serialized_network_config["_target_"] | |
model = Plonk(**serialized_network_config) | |
ckpt = torch.load(f"checkpoints/{checkpoint_dir}/last.ckpt") | |
ckpt_state_dict = ckpt["state_dict"] | |
ckpt_state_dict = {k: v for k, v in ckpt_state_dict.items() if "ema_network" in k} | |
ckpt_state_dict = { | |
k.replace("ema_network.", ""): v for k, v in ckpt_state_dict.items() | |
} | |
model.load_state_dict(ckpt_state_dict) | |
model.push_to_hub(repo_name, commit_message="Fixed ckpt keys") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--checkpoint_dir", type=str, required=True) | |
parser.add_argument("--repo_name", type=str, required=True) | |
args = parser.parse_args() | |
upload_model(args.checkpoint_dir, args.repo_name) | |