nicolas-dufour's picture
squash: merge all unpushed commits
c4c7cee
import torch
import numpy as np
def edm_sampler(
net,
x_N,
conditioning=None,
latents=None,
randn_like=torch.randn_like,
num_steps=18,
sigma_min=0.002,
sigma_max=80,
rho=7,
S_churn=0,
S_min=0,
S_max=float("inf"),
S_noise=1,
):
# Adjust noise levels based on what's supported by the network.
sigma_min = max(sigma_min, net.sigma_min)
sigma_max = min(sigma_max, net.sigma_max)
# Time step discretization.
step_indices = torch.arange(num_steps, dtype=torch.float64, device=x_N.device)
t_steps = (
sigma_max ** (1 / rho)
+ step_indices
/ (num_steps - 1)
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
) ** rho
t_steps = torch.cat(
[net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]
) # t_N = 0
# Main sampling loop.
x_next = x_N.to(torch.float64) * t_steps[0]
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): # 0, ..., N-1
x_cur = x_next
# Increase noise temporarily.
gamma = (
min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0
)
t_hat = net.round_sigma(t_cur + gamma * t_cur)
x_hat = x_cur + (t_hat**2 - t_cur**2).sqrt() * S_noise * randn_like(x_cur)
# Euler step.
denoised, latents = net(
x_hat, t_hat.expand(x_cur.shape[0]), conditioning, previous_latents=latents
)
denoised = denoised.to(torch.float64)
d_cur = (x_hat - denoised) / t_hat
x_next = x_hat + (t_next - t_hat) * d_cur
# Apply 2nd order correction.
if i < num_steps - 1:
denoised, latents = net(
x_next,
t_next.expand(x_cur.shape[0]),
conditioning,
previous_latents=latents,
)
denoised = denoised.to(torch.float64)
d_prime = (x_next - denoised) / t_next
x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)
return x_next