Plonk / train_random.py
nicolas-dufour's picture
squash: merge all unpushed commits
c4c7cee
import os
import hydra
import wandb
from os.path import isfile, join
from shutil import copyfile
import torch
from omegaconf import OmegaConf
from hydra.core.hydra_config import HydraConfig
from hydra.utils import instantiate
from pytorch_lightning.callbacks import LearningRateMonitor
from lightning_fabric.utilities.rank_zero import _get_rank
from callbacks import EMACallback, FixNANinGrad, IncreaseDataEpoch
from models.module import RandomGeolocalizer
torch.set_float32_matmul_precision("high") # TODO do we need that?
# Registering the "eval" resolver allows for advanced config
# interpolation with arithmetic operations in hydra:
# https://omegaconf.readthedocs.io/en/2.3_branch/how_to_guides.html
OmegaConf.register_new_resolver("eval", eval)
def wandb_init(cfg):
directory = cfg.checkpoints.dirpath
if isfile(join(directory, "wandb_id.txt")) and cfg.logger_suffix == "":
with open(join(directory, "wandb_id.txt"), "r") as f:
wandb_id = f.readline()
else:
rank = _get_rank()
wandb_id = wandb.util.generate_id()
print(f"Generated wandb id: {wandb_id}")
if rank == 0 or rank is None:
with open(join(directory, "wandb_id.txt"), "w") as f:
f.write(str(wandb_id))
return wandb_id
def load_model(cfg, dict_config, wandb_id, callbacks):
directory = cfg.checkpoints.dirpath
if isfile(join(directory, "last.ckpt")):
checkpoint_path = join(directory, "last.ckpt")
logger = instantiate(cfg.logger, id=wandb_id, resume="allow")
model = RandomGeolocalizer.load_from_checkpoint(checkpoint_path, cfg=cfg.model)
ckpt_path = join(directory, "last.ckpt")
print(f"Loading form checkpoint ... {ckpt_path}")
else:
ckpt_path = None
logger = instantiate(cfg.logger, id=wandb_id, resume="allow")
log_dict = {"model": dict_config["model"], "dataset": dict_config["dataset"]}
logger._wandb_init.update({"config": log_dict})
model = RandomGeolocalizer(cfg.model)
trainer, strategy = cfg.trainer, cfg.trainer.strategy
# from pytorch_lightning.profilers import PyTorchProfiler
trainer = instantiate(
trainer,
strategy=strategy,
logger=logger,
callbacks=callbacks,
# profiler=PyTorchProfiler(
# dirpath="logs",
# schedule=torch.profiler.schedule(wait=1, warmup=3, active=3, repeat=1),
# on_trace_ready=torch.profiler.tensorboard_trace_handler("./logs"),
# record_shapes=True,
# with_stack=True,
# with_flops=True,
# with_modules=True,
# ),
)
return trainer, model, ckpt_path
def project_init(cfg):
print("Working directory set to {}".format(os.getcwd()))
directory = cfg.checkpoints.dirpath
os.makedirs(directory, exist_ok=True)
copyfile(".hydra/config.yaml", join(directory, "config.yaml"))
def callback_init(cfg):
checkpoint_callback = instantiate(cfg.checkpoints)
progress_bar = instantiate(cfg.progress_bar)
lr_monitor = LearningRateMonitor()
ema_callback = EMACallback(
"network",
"ema_network",
decay=cfg.model.ema_decay,
start_ema_step=cfg.model.start_ema_step,
init_ema_random=False,
)
fix_nan_callback = FixNANinGrad(
monitor=["train/loss"],
)
increase_data_epoch_callback = IncreaseDataEpoch()
callbacks = [
checkpoint_callback,
progress_bar,
lr_monitor,
ema_callback,
fix_nan_callback,
increase_data_epoch_callback,
]
return callbacks
def init_datamodule(cfg):
datamodule = instantiate(cfg.datamodule)
return datamodule
def hydra_boilerplate(cfg):
dict_config = OmegaConf.to_container(cfg, resolve=True)
callbacks = callback_init(cfg)
datamodule = init_datamodule(cfg)
project_init(cfg)
wandb_id = wandb_init(cfg)
trainer, model, ckpt_path = load_model(cfg, dict_config, wandb_id, callbacks)
return trainer, model, datamodule, ckpt_path
@hydra.main(config_path="configs", config_name="config", version_base=None)
def main(cfg):
if "stage" in cfg and cfg.stage == "debug":
import lovely_tensors as lt
lt.monkey_patch()
trainer, model, datamodule, ckpt_path = hydra_boilerplate(cfg)
model.datamodule = datamodule
# model = torch.compile(model)
if cfg.mode == "train":
trainer.fit(model, datamodule=datamodule, ckpt_path=ckpt_path)
elif cfg.mode == "eval":
trainer.test(model, datamodule=datamodule)
elif cfg.mode == "traineval":
cfg.mode = "train"
trainer.fit(model, datamodule=datamodule, ckpt_path=ckpt_path)
cfg.mode = "test"
trainer.test(model, datamodule=datamodule)
if __name__ == "__main__":
main()