Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import matplotlib.pyplot as plt | |
class BatchedKDE(nn.Module): | |
def __init__(self, bandwith=0.0): | |
super().__init__() | |
self.bandwidth = bandwith | |
self.X = None | |
def fit(self, X: torch.Tensor): | |
self.mu = X | |
self.nmu2 = torch.sum(X * X, dim=-1, keepdim=True) | |
b, n, d = X.shape | |
if self.bandwidth == 0: | |
q = torch.quantile(X.view(b, -1), 0.75) - torch.quantile( | |
X.view(b, -1), 0.25 | |
) | |
self.bandwidth = ( | |
0.9 * torch.min(torch.std(X, dim=(1, 2)), q / 1.34) / pow(n, 0.2) | |
) | |
def score(self, X): | |
nx2 = torch.sum(X * X, dim=-1, keepdim=True) | |
dot = torch.einsum("bnd, bmd -> bnm", X, self.mu) | |
dist = nx2 + self.nmu2.transpose(1, 2) - 2 * dot | |
return torch.sum( | |
torch.exp(-dist / self.bandwidth.unsqueeze(-1).unsqueeze(-1)), dim=-1 | |
) | |