import streamlit as st import pandas as pd from PIL import Image import torch from pipe import PlonkPipeline from pathlib import Path from streamlit_extras.colored_header import colored_header import plotly.express as px import requests from io import BytesIO # Set page config st.set_page_config( page_title="Around the World in 80 Timesteps", page_icon="πŸ—ΊοΈ", layout="wide" ) device = "cuda" if torch.cuda.is_available() else "cpu" PROJECT_ROOT = Path(__file__).parent.parent.absolute() # Define checkpoint path CHECKPOINT_DIR = PROJECT_ROOT / "checkpoints" MODEL_NAMES = { "PLONK_YFCC": "nicolas-dufour/PLONK_YFCC", "PLONK_OSV_5M": "nicolas-dufour/PLONK_OSV_5M", "PLONK_iNaturalist": "nicolas-dufour/PLONK_iNaturalist", } @st.cache_resource def load_model(model_name): """Load the model and cache it to prevent reloading""" try: pipe = PlonkPipeline(model_path=model_name) return pipe except Exception as e: st.error(f"Error loading model: {str(e)}") st.stop() PIPES = {model_name: load_model(MODEL_NAMES[model_name]) for model_name in MODEL_NAMES} def predict_location(image, model_name, cfg=0.0, num_samples=256): with torch.no_grad(): batch = {"img": [], "emb": []} # If image is already a PIL Image, use it directly if isinstance(image, Image.Image): img = image.convert("RGB") else: img = Image.open(image).convert("RGB") pipe = PIPES[model_name] # Get regular predictions predicted_gps = pipe(img, batch_size=num_samples, cfg=cfg, num_steps=32) # Get single high-confidence prediction high_conf_gps = pipe(img, batch_size=1, cfg=2.0, num_steps=32) return { "lat": predicted_gps[:, 0].astype(float).tolist(), "lon": predicted_gps[:, 1].astype(float).tolist(), "high_conf_lat": high_conf_gps[0, 0].astype(float), "high_conf_lon": high_conf_gps[0, 1].astype(float), } def load_example_images(): """Load example images from the examples directory""" examples_dir = Path(__file__).parent / "examples" if not examples_dir.exists(): st.error( """ Examples directory not found. Please create the following structure: demo/ └── examples/ β”œβ”€β”€ eiffel_tower.jpg β”œβ”€β”€ colosseum.jpg β”œβ”€β”€ taj_mahal.jpg β”œβ”€β”€ statue_liberty.jpg └── sydney_opera.jpg """ ) return {} examples = {} for img_path in examples_dir.glob("*.jpg"): # Use filename without extension as the key name = img_path.stem.replace("_", " ").title() examples[name] = str(img_path) if not examples: st.warning("No example images found in the examples directory.") return examples def resize_image_for_display(image, max_size=400): """Resize image while maintaining aspect ratio""" # Get current size width, height = image.size # Calculate ratio to maintain aspect ratio if width > height: if width > max_size: ratio = max_size / width new_size = (max_size, int(height * ratio)) else: if height > max_size: ratio = max_size / height new_size = (int(width * ratio), max_size) # Only resize if image is larger than max_size if width > max_size or height > max_size: return image.resize(new_size, Image.Resampling.LANCZOS) return image def load_image_from_url(url): """Load an image from a URL""" try: response = requests.get(url) response.raise_for_status() # Raise an exception for bad status codes return Image.open(BytesIO(response.content)) except Exception as e: st.error(f"Error loading image from URL: {str(e)}") return None def main(): # Custom CSS st.markdown( """ """, unsafe_allow_html=True, ) # Header with custom styling colored_header( label="πŸ—ΊοΈ Around the World in 80 Timesteps: A Generative Approach to Global Visual Geolocation", description="Upload an image and our model, PLONK, will predict possible locations! In red we will sample one point with guidance scale 2.0 for the best guess.

Project page: https://nicolas-dufour.github.io/plonk", color_name="red-70", ) # Adjust column ratio to give 2/3 of the space to the map col1, col2 = st.columns([1, 2], gap="large") with col1: # Add model selection before the sliders model_name = st.selectbox( "πŸ€– Select Model", options=MODEL_NAMES.keys(), index=0, # Default to YFCC help="Choose which PLONK model variant to use for prediction.", ) # Modify the slider columns to accommodate both controls col_slider1, col_slider2 = st.columns([0.5, 0.5]) with col_slider1: cfg_value = st.slider( "🎯 Guidance scale", min_value=0.0, max_value=5.0, value=0.0, step=0.1, help="Scale for classifier-free guidance during sampling. A small value makes the model predictions display the diversity of the model, while a large value makes the model predictions more conservative but potentially more accurate.", ) with col_slider2: num_samples = st.number_input( "🎲 Number of samples", min_value=1, max_value=5000, value=1000, step=1, help="Number of location predictions to generate. More samples give better coverage but take longer to compute.", ) st.markdown("### πŸ“Έ Choose your image") tab1, tab2, tab3 = st.tabs(["Upload", "URL", "Examples"]) with tab1: uploaded_file = st.file_uploader( "Choose an image...", type=["png", "jpg", "jpeg"], help="Supported formats: PNG, JPG, JPEG", ) if uploaded_file is not None: st.markdown('
', unsafe_allow_html=True) original_image = Image.open(uploaded_file) display_image = resize_image_for_display( original_image.copy(), max_size=300 ) st.image( display_image, caption="Uploaded Image", use_container_width=True ) st.markdown("
", unsafe_allow_html=True) if st.button("πŸ” Predict Location", key="predict_upload"): with st.spinner("🌍 Analyzing image and predicting locations..."): predictions = predict_location( original_image, model_name=model_name, cfg=cfg_value, num_samples=num_samples, ) st.session_state["predictions"] = predictions with tab2: url = st.text_input("Enter image URL:", key="image_url") if url: image = load_image_from_url(url) if image: st.markdown( '
', unsafe_allow_html=True ) display_image = resize_image_for_display(image.copy(), max_size=300) st.image( display_image, caption="Image from URL", use_container_width=True, ) st.markdown("
", unsafe_allow_html=True) if st.button("πŸ” Predict Location", key="predict_url"): with st.spinner( "🌍 Analyzing image and predicting locations..." ): predictions = predict_location( image, model_name=model_name, cfg=cfg_value, num_samples=num_samples, ) st.session_state["predictions"] = predictions with tab3: examples = load_example_images() st.markdown('
', unsafe_allow_html=True) example_cols = st.columns(len(examples)) for idx, (name, path) in enumerate(examples.items()): with example_cols[idx]: original_image = Image.open(path) display_image = resize_image_for_display( original_image.copy(), max_size=150 ) if st.container().button( "πŸ“Έ", key=f"img_{name}", help=f"Click to predict location for {name}", use_container_width=True, ): with st.spinner( "🌍 Analyzing image and predicting locations..." ): predictions = predict_location( original_image, model_name=model_name, cfg=cfg_value, num_samples=num_samples, ) st.session_state["predictions"] = predictions st.rerun() st.image(display_image, caption=name, use_container_width=True) st.markdown("
", unsafe_allow_html=True) with col2: st.markdown("### 🌍 Predicted Locations") if "predictions" in st.session_state: pred = st.session_state["predictions"] # Create DataFrame for all predictions df = pd.DataFrame( { "lat": pred["lat"], "lon": pred["lon"], "type": ["Sample"] * len(pred["lat"]), } ) # Add high-confidence prediction df = pd.concat( [ df, pd.DataFrame( { "lat": [pred["high_conf_lat"]], "lon": [pred["high_conf_lon"]], "type": ["Best Guess"], } ), ] ) # Create a more interactive map using Plotly fig = px.scatter_mapbox( df, lat="lat", lon="lon", zoom=2, opacity=0.6, color="type", color_discrete_map={"Sample": "blue", "Best Guess": "red"}, mapbox_style="carto-positron", ) fig.update_traces(selector=dict(name="Best Guess"), marker_size=15) fig.update_layout( margin={"r": 0, "t": 0, "l": 0, "b": 0}, height=500, showlegend=True, legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01), ) # Display map in a container with st.container(): st.plotly_chart(fig, use_container_width=True) # Display stats in a styled container with st.container(): st.markdown( f"""

πŸ“Š Prediction Statistics

Number of sampled locations: {len(pred["lat"])}

Best guess location: {pred["high_conf_lat"]:.2f}Β°, {pred["high_conf_lon"]:.2f}Β°

""", unsafe_allow_html=True, ) else: # Empty state with better styling st.markdown( """

πŸ‘† Upload an image and click 'Predict Location'

The predicted locations will appear here on an interactive map.

""", unsafe_allow_html=True, ) if __name__ == "__main__": main()