_target_: data.augmentation.ImageAugmentation names: "standard_augmentation,geometric_augmentation,clip_transform" # always apply clip_transform at the end clip_transform: _target_: torchvision.transforms.Compose transforms: - _target_: torchvision.transforms.Resize size: 224 interpolation: 3 antialias: true - _target_: torchvision.transforms.CenterCrop size: 224 - _target_: torchvision.transforms.ToTensor - _target_: torchvision.transforms.Normalize mean: [0.48145466, 0.4578275, 0.40821073] std: [0.26862954, 0.26130258, 0.27577711] standard_augmentation: _target_: data.augmentation.StandardAugmentation # by default, we all augmentation methods names: "brightness,contrast,sharpness,color,blur,gaussian_noise" # random PIL brigtness brightness: _target_: data.augmentation.PillowBrightness p: 0.2 factor_interval: [0.5, 1.5] # random PIL contrast contrast: _target_: data.augmentation.PillowContrast p: 0.2 factor_interval: [0.3, 3] # random PIL sharpness sharpness: _target_: data.augmentation.PillowSharpness p: 0.2 factor_interval: [0.5, 30.0] # random PIL color color: _target_: data.augmentation.PillowColor p: 0.2 factor_interval: [0.0, 2.0] # random PIL blur blur: _target_: data.augmentation.PillowBlur p: 0.2 factor_interval: [1, 2] # random numpy gaussian noise gaussian_noise: _target_: data.augmentation.NumpyGaussianNoise p: 0.2 factor_interval: [0.1, 0.04] geometric_augmentation: _target_: data.augmentation.GeometricAugmentation # by default, we all augmentation methods names: "random_rotation,random_resized_crop,random_horizontal_flip" # random rotation random_rotation: _target_: torchvision.transforms.RandomRotation degrees: [-15, 15] # random crop random_resized_crop: _target_: torchvision.transforms.RandomResizedCrop scale: [0.5, 1.0] ratio: [0.9, 1.1] size: 224 # random horizontal flip random_horizontal_flip: _target_: torchvision.transforms.RandomHorizontalFlip p: 0.5 # random vertical flip random_vertical_flip: _target_: torchvision.transforms.RandomVerticalFlip p: 0.5