import glob import json import logging import os import random from collections import OrderedDict from multiprocessing import Value from pathlib import Path import braceexpand import numpy as np import pandas as pd import torch import webdataset as wds from lightning_fabric.utilities.rank_zero import _get_rank from PIL import Image from torch.utils.data import Dataset, get_worker_info from tqdm import tqdm from webdataset.tariterators import ( base_plus_ext, tar_file_expander, url_opener, valid_sample, ) from functools import partial import math class GPSWebdataset(wds.DataPipeline): def __init__( self, root, image_transforms=None, distributed=True, train=True, epoch=0, seed=3407, embedding_name=None, return_image=True, shard_shuffle_size=2000, shard_shuffle_initial=500, sample_shuffle_size=5000, sample_shuffle_initial=1000, metadata_attributes=[], ): self.image_transforms = image_transforms dataset_tar_files = [] # Get a list of all tar files in the directory if " " in root: root = root.split(" ") print(f"Using multiple dataset[s: {root}") if isinstance(root, str): tar_files = [f for f in os.listdir(root) if f.endswith(".tar")] # Sort the list of tar files tar_files.sort() first_tar_file = tar_files[0].split(".")[0] last_tar_file = tar_files[-1].split(".")[0] for tar_file in tar_files: dataset_tar_files.append(f"{root}/{tar_file}") dataset_pattern = f"{root}/{{{first_tar_file}..{last_tar_file}}}.tar" self.num_samples, _ = get_dataset_size(dataset_pattern) elif isinstance(root, list): num_samples = 0 for r in root: tar_files = [f for f in os.listdir(r) if f.endswith(".tar")] tar_files.sort() first_tar_file = tar_files[0].split(".")[0] last_tar_file = tar_files[-1].split(".")[0] for tar_file in tar_files: dataset_tar_files.append(f"{r}/{tar_file}") num_samples += get_dataset_size( f"{r}/{{{first_tar_file}..{last_tar_file}}}.tar" )[0] self.num_samples = num_samples else: raise ValueError( f"root must be a string or list of strings. Got {type(root)}" ) rank = _get_rank() self.shared_epoch = SharedEpoch(epoch) pipeline = [wds.SimpleShardList(dataset_tar_files)] if distributed: if train: pipeline.extend( [ detshuffle2( bufsize=shard_shuffle_size, initial=shard_shuffle_initial, seed=seed, epoch=self.shared_epoch, ), wds.split_by_node, wds.split_by_worker, tarfile_to_samples_nothrow, wds.shuffle( bufsize=sample_shuffle_size, initial=sample_shuffle_initial, ), ] ) else: pipeline.extend( [wds.split_by_node, wds.split_by_worker, tarfile_to_samples_nothrow] ) else: if train: pipeline.extend( [ wds.shuffle( bufsize=shard_shuffle_size, initial=sample_shuffle_initial, ), wds.split_by_worker, tarfile_to_samples_nothrow, wds.shuffle( bufsize=sample_shuffle_size, initial=sample_shuffle_initial, ), ] ) else: pipeline.extend([wds.split_by_worker, tarfile_to_samples_nothrow]) outputs_transforms = OrderedDict() outputs_rename = OrderedDict() if return_image: outputs_rename["img.jpg"] = "jpg;png;webp;jpeg" outputs_transforms["img.jpg"] = ( self.image_transforms if self.image_transforms is not None else lambda x: x ) if embedding_name is not None: outputs_rename[f"emb.npy"] = f"{embedding_name}.npy" outputs_transforms[f"emb.npy"] = lambda x: torch.from_numpy(x) if metadata_attributes != []: for attr in metadata_attributes: outputs_rename[f"{attr}.json"] = f"json" outputs_transforms[f"{attr}.json"] = partial(get_attr, attr=attr) outputs_rename["gps"] = "json" outputs_transforms["gps"] = get_gps pipeline.extend( [ wds.rename(**outputs_rename), filter_dict_keys(*outputs_rename.keys(), handler=log_and_continue), ] ) if return_image: pipeline.append(wds.decode("pilrgb", handler=log_and_continue)) else: pipeline.append(wds.decode(handler=log_and_continue)) pipeline.extend( [ wds.map_dict(**outputs_transforms, handler=log_and_continue), wds.rename( **{k.split(".")[0]: k for k in outputs_transforms.keys()}, ), ] ) super().__init__(*pipeline) def __len__(self): return self.num_samples def normalize_gps(lat, lon): """Used to put all lat lon inside ±90 and ±180.""" lat = (lat + 90) % 360 - 90 if lat > 90: lat = 180 - lat lon += 180 lon = (lon + 180) % 360 - 180 return lat, lon def get_attr(metadata, attr): # datapoint = json.loads(metadata) attr_value = metadata[attr] if isinstance(attr_value, float) and math.isnan(attr_value): return "NaN" else: return attr_value def get_gps(metadata): datapoint = json.loads(metadata) lat, lon = normalize_gps( float(datapoint["latitude"]), float(datapoint["longitude"]) ) gps = torch.tensor([np.radians(lat), np.radians(lon)], dtype=torch.float) return gps def get_dataset_size(shards): shards_list, _ = expand_urls(shards) dir_path = os.path.dirname(shards_list[0]) sizes_filename = os.path.join(dir_path, "sizes.json") if os.path.exists(sizes_filename): sizes = json.load(open(sizes_filename, "r")) total_size = sum([int(sizes[os.path.basename(shard)]) for shard in shards_list]) else: total_size = 0 # num samples undefined sizes = {} for shard in tqdm(shards_list): dataset = wds.WebDataset(shard) num_samples = sum(1 for _ in dataset) total_size += num_samples sizes[os.path.basename(shard)] = num_samples print(f"Total number of samples: {total_size}") with open(sizes_filename, "w") as f: json.dump(sizes, f) num_shards = len(shards_list) return total_size, num_shards def expand_urls(urls, weights=None): if weights is None: expanded_urls = wds.shardlists.expand_urls(urls) return expanded_urls, None if isinstance(urls, str): urllist = urls.split("::") weights = weights.split("::") assert len(weights) == len( urllist ), f"Expected the number of data components ({len(urllist)}) and weights({len(weights)}) to match." weights = [float(weight) for weight in weights] all_urls, all_weights = [], [] for url, weight in zip(urllist, weights): expanded_url = list(braceexpand.braceexpand(url)) expanded_weights = [weight for _ in expanded_url] all_urls.extend(expanded_url) all_weights.extend(expanded_weights) return all_urls, all_weights else: all_urls = list(urls) return all_urls, weights class SharedEpoch: def __init__(self, epoch: int = 0): self.shared_epoch = Value("i", epoch) def set_value(self, epoch): self.shared_epoch.value = epoch def get_value(self): return self.shared_epoch.value # _SHARD_SHUFFLE_SIZE = 256 # _SHARD_SHUFFLE_INITIAL = 128 # _SAMPLE_SHUFFLE_SIZE = 5000 # _SAMPLE_SHUFFLE_INITIAL = 1000 class detshuffle2(wds.PipelineStage): def __init__( self, bufsize=1000, initial=100, seed=0, epoch=-1, ): self.bufsize = bufsize self.initial = initial self.seed = seed self.epoch = epoch def run(self, src): if isinstance(self.epoch, SharedEpoch): epoch = self.epoch.get_value() else: # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) # situation as different workers may wrap at different times (or not at all). self.epoch += 1 epoch = self.epoch rng = random.Random() if self.seed < 0: # If seed is negative, we use the worker's seed, this will be different across all nodes/workers seed = pytorch_worker_seed(epoch) else: # This seed to be deterministic AND the same across all nodes/workers in each epoch seed = self.seed + epoch rng.seed(seed) return wds.filters._shuffle(src, self.bufsize, self.initial, rng) def pytorch_worker_seed(increment=0): """get dataloader worker seed from pytorch""" worker_info = get_worker_info() if worker_info is not None: # favour using the seed already created for pytorch dataloader workers if it exists seed = worker_info.seed if increment: # space out seed increments so they can't overlap across workers in different iterations seed += increment * max(1, worker_info.num_workers) return seed # fallback to wds rank based seed return wds.utils.pytorch_worker_seed() def log_and_continue(exn): """Call in an exception handler to ignore any exception, issue a warning, and continue.""" logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.") return True def group_by_keys_nothrow( data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None ): """Return function over iterator that groups key, value pairs into samples. :param keys: function that splits the key into key and extension (base_plus_ext) :param lcase: convert suffixes to lower case (Default value = True) """ current_sample = None for filesample in data: assert isinstance(filesample, dict) fname, value = filesample["fname"], filesample["data"] prefix, suffix = keys(fname) if prefix is None: continue if lcase: suffix = suffix.lower() # FIXME webdataset version throws if suffix in current_sample, but we have a potential for # this happening in the current LAION400m dataset if a tar ends with same prefix as the next # begins, rare, but can happen since prefix aren't unique across tar files in that dataset if ( current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample ): if valid_sample(current_sample): yield current_sample current_sample = dict(__key__=prefix, __url__=filesample["__url__"]) if suffixes is None or suffix in suffixes: current_sample[suffix] = value if valid_sample(current_sample): yield current_sample def tarfile_to_samples_nothrow(src, handler=log_and_continue): # NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw streams = url_opener(src, handler=handler) files = tar_file_expander(streams, handler=handler) samples = group_by_keys_nothrow(files, handler=handler) return samples def filter_no_caption_or_no_image(sample): has_caption = "txt" in sample has_image = ( "png" in sample or "jpg" in sample or "jpeg" in sample or "webp" in sample ) return has_caption and has_image def filter_metadata(sample, min_image_size, min_clip_score): metadata = json.loads(sample["json"]) width = metadata["width"] height = metadata["height"] clip_score = metadata["clip_score"] / 100 return ( width >= min_image_size and height >= min_image_size and clip_score >= min_clip_score ) def _filter_dict_keys( data, *args, handler=wds.reraise_exception, missing_is_error=True, none_is_error=None, ): """Convert dict samples to tuples.""" if none_is_error is None: none_is_error = missing_is_error if len(args) == 1 and isinstance(args[0], str) and " " in args[0]: args = args[0].split() for sample in data: try: result = { f: wds.getfirst(sample, f, missing_is_error=missing_is_error) for f in args } print if none_is_error and any(x is None for x in result): raise ValueError(f"to_tuple {args} got {sample.keys()}") yield result except Exception as exn: if handler(exn): continue else: break filter_dict_keys = wds.pipelinefilter(_filter_dict_keys)