Spaces:
Sleeping
Sleeping
path
Browse files
app.py
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, STOKEStreamer
|
3 |
+
from threading import Thread
|
4 |
+
import json
|
5 |
+
import torch
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from matplotlib.colors import to_hex
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
import urllib.request
|
11 |
+
import zipfile
|
12 |
+
|
13 |
+
|
14 |
+
class MLP(torch.nn.Module):
|
15 |
+
def __init__(self, input_dim, output_dim, hidden_dim=1024, layer_id=0, cuda=False):
|
16 |
+
super(MLP, self).__init__()
|
17 |
+
self.fc1 = torch.nn.Linear(input_dim, hidden_dim) # Input layer to hidden layer
|
18 |
+
self.fc3 = torch.nn.Linear(hidden_dim, output_dim) # Hidden layer to output layer
|
19 |
+
self.layer_id = layer_id
|
20 |
+
if cuda:
|
21 |
+
self.device = "cuda"
|
22 |
+
else:
|
23 |
+
self.device = "cpu"
|
24 |
+
self.to(self.device)
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = torch.flatten(x, start_dim=1)
|
28 |
+
x = torch.relu(self.fc1(x))
|
29 |
+
x = self.fc3(x)
|
30 |
+
|
31 |
+
return torch.argmax(x, dim=-1).cpu().detach(), torch.softmax(x, dim=-1).cpu().detach()
|
32 |
+
|
33 |
+
def map_value_to_color(value, colormap_name='tab20c'):
|
34 |
+
"""
|
35 |
+
Map a value between 0 and 1 to a CSS color using a Python colormap.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
value (float): A value between 0 and 1.
|
39 |
+
colormap_name (str): The name of the colormap to use (e.g., 'viridis').
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
str: A CSS color string in the form 'rgb(r, g, b)'.
|
43 |
+
"""
|
44 |
+
# Ensure the value is within the range [0, 1]
|
45 |
+
value = np.clip(value, 0.0, 1.0)
|
46 |
+
|
47 |
+
# Get the colormap
|
48 |
+
colormap = plt.get_cmap(colormap_name)
|
49 |
+
|
50 |
+
# Map the value to a color
|
51 |
+
rgba_color = colormap(value)
|
52 |
+
|
53 |
+
# Convert the RGBA color to CSS format
|
54 |
+
css_color = to_hex(rgba_color)
|
55 |
+
|
56 |
+
return css_color + "88"
|
57 |
+
|
58 |
+
@st.cache_resource
|
59 |
+
def get_model_and_tokenizer(name):
|
60 |
+
# Load pre-trained model and tokenizer
|
61 |
+
tok = AutoTokenizer.from_pretrained(name)
|
62 |
+
model = AutoModelForCausalLM.from_pretrained(name)
|
63 |
+
return model, tok
|
64 |
+
|
65 |
+
@st.cache_resource
|
66 |
+
def get_classifiers_for_model(att_size, emb_size, device, config_paths):
|
67 |
+
classifier_token = None
|
68 |
+
#print(config)
|
69 |
+
config = {
|
70 |
+
"classifier_token": json.load(open(os.path.join(config_paths["classifier_token"], "config.json"), "r")),
|
71 |
+
"classifier_span": json.load(open(os.path.join(config_paths["classifier_span"], "config.json"), "r"))
|
72 |
+
}
|
73 |
+
|
74 |
+
layer_id = config["classifier_token"]["layer"]
|
75 |
+
|
76 |
+
classifier_span = MLP(att_size, 2, hidden_dim=config["classifier_span"]["classifier_dim"]).to(device)
|
77 |
+
classifier_span.load_state_dict(torch.load(os.path.join(config_paths["classifier_span"], "checkpoint.pt"), map_location=device))
|
78 |
+
|
79 |
+
classifier_token = MLP(emb_size, len(config["classifier_token"]["label_map"]), layer_id=layer_id, hidden_dim=config["classifier_token"]["classifier_dim"]).to(device)
|
80 |
+
classifier_token.load_state_dict(torch.load(os.path.join(config_paths["classifier_token"], "checkpoint.pt"), map_location=device))
|
81 |
+
|
82 |
+
print(sum(p.numel() for p in classifier_span.parameters()), sum(p.numel() for p in classifier_token.parameters()))
|
83 |
+
|
84 |
+
return classifier_span, classifier_token, config["classifier_token"]["label_map"]
|
85 |
+
|
86 |
+
def get_available_models():
|
87 |
+
available_models = []
|
88 |
+
for model_name in ["gpt2", "gpt2-xl"]:
|
89 |
+
if os.path.isfile(f"checkpoints/{model_name}/config.json"):
|
90 |
+
available_models.append(model_name)
|
91 |
+
return available_models
|
92 |
+
|
93 |
+
def get_available_datasets(model_name):
|
94 |
+
available_datasets = []
|
95 |
+
config_path = f"checkpoints/{model_name}/config.json"
|
96 |
+
if os.path.isfile(config_path):
|
97 |
+
with open(config_path, "r") as f:
|
98 |
+
config = json.load(f)
|
99 |
+
# Assuming datasets are keys in config.json
|
100 |
+
available_datasets = list(config.keys())
|
101 |
+
return available_datasets
|
102 |
+
|
103 |
+
def download_and_extract_zip(url, extract_dir):
|
104 |
+
# Determine the parent directory
|
105 |
+
parent_dir = os.path.split(os.path.dirname(extract_dir))[-2]
|
106 |
+
print(parent_dir)
|
107 |
+
|
108 |
+
# Download the zip file to the parent directory
|
109 |
+
zip_file_path = os.path.join(parent_dir, "data.zip")
|
110 |
+
urllib.request.urlretrieve(url, zip_file_path)
|
111 |
+
|
112 |
+
# Extract the zip file
|
113 |
+
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
|
114 |
+
zip_ref.extractall(parent_dir)
|
115 |
+
|
116 |
+
# Remove the zip file
|
117 |
+
os.remove(zip_file_path)
|
118 |
+
|
119 |
+
def find_datasets_and_model_ids(root_dir):
|
120 |
+
datasets = {}
|
121 |
+
|
122 |
+
# Check if the root directory exists
|
123 |
+
if not os.path.exists(root_dir):
|
124 |
+
# If root directory doesn't exist, download a zip file and unpack it
|
125 |
+
print("Root directory doesn't exist. Downloading zip file...")
|
126 |
+
url = "https://drive.usercontent.google.com/download?id=1dHjH_J0zuPS-SDVrh49tMpIx5ramu_hc&export=download&authuser=0&confirm=t&uuid=4efcec77-571c-44c7-82f1-f39ddae50eb5&at=APZUnTW8g-Ab4PUT0-B9mh4jQSc-%3A1711040271924" # Replace with your actual download URL
|
127 |
+
download_and_extract_zip(url, root_dir)
|
128 |
+
print("Zip file downloaded and unpacked successfully.")
|
129 |
+
|
130 |
+
|
131 |
+
for root, dirs, files in os.walk(root_dir):
|
132 |
+
if 'config.json' in files and 'stoke_config.json' in files:
|
133 |
+
config_path = os.path.join(root, 'config.json')
|
134 |
+
stoke_config_path = os.path.join(root, 'stoke_config.json')
|
135 |
+
|
136 |
+
with open(config_path, 'r') as f:
|
137 |
+
config_data = json.load(f)
|
138 |
+
model_id = config_data.get('model_id')
|
139 |
+
if model_id:
|
140 |
+
dataset_name = os.path.basename(os.path.dirname(config_path))
|
141 |
+
|
142 |
+
with open(stoke_config_path, 'r') as f:
|
143 |
+
stoke_config_data = json.load(f)
|
144 |
+
if model_id:
|
145 |
+
dataset_name = os.path.basename(os.path.dirname(stoke_config_path))
|
146 |
+
datasets.setdefault(model_id, {})[dataset_name] = stoke_config_data
|
147 |
+
|
148 |
+
return datasets
|
149 |
+
|
150 |
+
|
151 |
+
# Main content
|
152 |
+
st.title("Playground")
|
153 |
+
|
154 |
+
# Sidebar for model and dataset selection
|
155 |
+
with st.sidebar:
|
156 |
+
st.subheader("Model and Dataset Selection")
|
157 |
+
datasets = find_datasets_and_model_ids("data/")
|
158 |
+
available_models = datasets.keys()
|
159 |
+
print(datasets)
|
160 |
+
if available_models:
|
161 |
+
model_selection = st.selectbox("Select Model", available_models)
|
162 |
+
else:
|
163 |
+
st.error("No models available. Please check the file paths.")
|
164 |
+
|
165 |
+
# Select dataset based on selected model
|
166 |
+
available_datasets = datasets[model_selection]
|
167 |
+
if available_datasets:
|
168 |
+
dataset_selection = st.selectbox("Select Dataset", available_datasets)
|
169 |
+
else:
|
170 |
+
st.error("No datasets available for the selected model.")
|
171 |
+
|
172 |
+
# Select dataset based on selected model
|
173 |
+
available_configs = datasets[model_selection][dataset_selection]
|
174 |
+
if available_configs:
|
175 |
+
config_selection = st.selectbox("Select Config", available_configs.keys())
|
176 |
+
else:
|
177 |
+
st.error("No configs available for the selected dataset.")
|
178 |
+
|
179 |
+
# Load model and streamer based on selections
|
180 |
+
model, tok = get_model_and_tokenizer(model_selection)
|
181 |
+
if torch.cuda.is_available():
|
182 |
+
model.cuda()
|
183 |
+
classifier_span, classifier_token, label_map = get_classifiers_for_model(model.config.n_head*model.config.n_layer, model.config.n_embd, model.device, datasets[model_selection][dataset_selection][config_selection])
|
184 |
+
streamer = STOKEStreamer(tok, classifier_token, classifier_span)
|
185 |
+
|
186 |
+
new_tags = label_map
|
187 |
+
|
188 |
+
|
189 |
+
def filter_spans(spans_and_values):
|
190 |
+
if spans_and_values == []:
|
191 |
+
return [], []
|
192 |
+
# Create a dictionary to store spans based on their second index values
|
193 |
+
span_dict = {}
|
194 |
+
|
195 |
+
spans, values = [x[0] for x in spans_and_values], [x[1] for x in spans_and_values]
|
196 |
+
|
197 |
+
# Iterate through the spans and update the dictionary with the highest value
|
198 |
+
for span, value in zip(spans, values):
|
199 |
+
start, end = span
|
200 |
+
if start > end or end - start > 15 or start == 0:
|
201 |
+
continue
|
202 |
+
current_value = span_dict.get(end, None)
|
203 |
+
|
204 |
+
if current_value is None or current_value[1] < value:
|
205 |
+
span_dict[end] = (span, value)
|
206 |
+
|
207 |
+
if span_dict == {}:
|
208 |
+
return [], []
|
209 |
+
# Extract the filtered spans and values
|
210 |
+
filtered_spans, filtered_values = zip(*span_dict.values())
|
211 |
+
|
212 |
+
return list(filtered_spans), list(filtered_values)
|
213 |
+
|
214 |
+
def remove_overlapping_spans(spans):
|
215 |
+
# Sort the spans based on their end points
|
216 |
+
sorted_spans = sorted(spans, key=lambda x: x[0][1])
|
217 |
+
|
218 |
+
non_overlapping_spans = []
|
219 |
+
last_end = float('-inf')
|
220 |
+
|
221 |
+
# Iterate through the sorted spans
|
222 |
+
for span in sorted_spans:
|
223 |
+
start, end = span[0]
|
224 |
+
value = span[1]
|
225 |
+
|
226 |
+
# If the current span does not overlap with the previous one
|
227 |
+
if start >= last_end:
|
228 |
+
non_overlapping_spans.append(span)
|
229 |
+
last_end = end
|
230 |
+
else:
|
231 |
+
# If it overlaps, choose the one with the highest value
|
232 |
+
existing_span_index = -1
|
233 |
+
for i, existing_span in enumerate(non_overlapping_spans):
|
234 |
+
if existing_span[0][1] <= start:
|
235 |
+
existing_span_index = i
|
236 |
+
break
|
237 |
+
if existing_span_index != -1 and non_overlapping_spans[existing_span_index][1] < value:
|
238 |
+
non_overlapping_spans[existing_span_index] = span
|
239 |
+
|
240 |
+
return non_overlapping_spans
|
241 |
+
|
242 |
+
def generate_html_no_overlap(tokenized_text, spans):
|
243 |
+
current_index = 0
|
244 |
+
html_content = ""
|
245 |
+
|
246 |
+
for (span_start, span_end), value in spans:
|
247 |
+
# Add text before the span
|
248 |
+
html_content += "".join(tokenized_text[current_index:span_start])
|
249 |
+
|
250 |
+
# Add the span with underlining
|
251 |
+
html_content += "<b><u>"
|
252 |
+
html_content += "".join(tokenized_text[span_start:span_end])
|
253 |
+
html_content += "</u></b> "
|
254 |
+
|
255 |
+
current_index = span_end
|
256 |
+
|
257 |
+
# Add any remaining text after the last span
|
258 |
+
html_content += "".join(tokenized_text[current_index:])
|
259 |
+
|
260 |
+
return html_content
|
261 |
+
|
262 |
+
|
263 |
+
css = """
|
264 |
+
<style>
|
265 |
+
.highlight {
|
266 |
+
display: inline;
|
267 |
+
}
|
268 |
+
.highlight::after {
|
269 |
+
background-color: var(data-color);
|
270 |
+
}
|
271 |
+
.spanhighlight {
|
272 |
+
padding: 2px 5px;
|
273 |
+
border-radius: 5px;
|
274 |
+
}
|
275 |
+
.tooltip {
|
276 |
+
position: relative;
|
277 |
+
display: inline-block;
|
278 |
+
}
|
279 |
+
|
280 |
+
.tooltip::after {
|
281 |
+
content: attr(data-tooltip-text); /* Set content from data-tooltip-text attribute */
|
282 |
+
display: none;
|
283 |
+
position: absolute;
|
284 |
+
background-color: #333;
|
285 |
+
color: #fff;
|
286 |
+
padding: 5px;
|
287 |
+
border-radius: 5px;
|
288 |
+
bottom: 100%; /* Position it above the element */
|
289 |
+
left: 50%;
|
290 |
+
transform: translateX(-50%);
|
291 |
+
width: auto;
|
292 |
+
min-width: 120px;
|
293 |
+
margin: 0 auto;
|
294 |
+
text-align: center;
|
295 |
+
}
|
296 |
+
|
297 |
+
.tooltip:hover::after {
|
298 |
+
display: block; /* Show the tooltip on hover */
|
299 |
+
}
|
300 |
+
|
301 |
+
.small-text {
|
302 |
+
padding: 2px 5px;
|
303 |
+
background-color: white;
|
304 |
+
border-radius: 5px;
|
305 |
+
font-size: xx-small;
|
306 |
+
margin-left: 0.5em;
|
307 |
+
vertical-align: 0.2em;
|
308 |
+
font-weight: bold;
|
309 |
+
color: grey;
|
310 |
+
}
|
311 |
+
</style>"""
|
312 |
+
|
313 |
+
|
314 |
+
def generate_html_spanwise(token_strings, tokenwise_preds, spans, tokenizer):
|
315 |
+
|
316 |
+
# spanwise annotated text
|
317 |
+
annotated = []
|
318 |
+
span_ends = -1
|
319 |
+
in_span = False
|
320 |
+
|
321 |
+
out_of_span_tokens = []
|
322 |
+
for i in reversed(range(len(tokenwise_preds))):
|
323 |
+
|
324 |
+
if in_span:
|
325 |
+
if i >= span_ends:
|
326 |
+
continue
|
327 |
+
else:
|
328 |
+
in_span = False
|
329 |
+
|
330 |
+
predicted_class = ""
|
331 |
+
style = ""
|
332 |
+
|
333 |
+
span = None
|
334 |
+
for s in spans:
|
335 |
+
if s[1] == i+1:
|
336 |
+
span = s
|
337 |
+
|
338 |
+
if tokenwise_preds[i] != 0 and span is not None:
|
339 |
+
predicted_class = f"highlight spanhighlight"
|
340 |
+
style = f"background-color: {map_value_to_color((tokenwise_preds[i]-1)/(len(new_tags)-1))}"
|
341 |
+
if tokenizer.convert_tokens_to_string([token_strings[i]]).startswith(" "):
|
342 |
+
annotated.append("Ġ")
|
343 |
+
|
344 |
+
span_opener = f"Ġ<span class='{predicted_class}' data-tooltip-text='{new_tags[tokenwise_preds[i]]}' style='{style}'>".replace(" ", "Ġ")
|
345 |
+
span_end = f"<span class='small-text'>{new_tags[tokenwise_preds[i]]}</span></span>"
|
346 |
+
annotated.extend(out_of_span_tokens)
|
347 |
+
out_of_span_tokens = []
|
348 |
+
span_ends = span[0]
|
349 |
+
in_span = True
|
350 |
+
annotated.append(span_end)
|
351 |
+
annotated.extend([token_strings[x] for x in reversed(range(span[0], span[1]))])
|
352 |
+
annotated.append(span_opener)
|
353 |
+
else:
|
354 |
+
out_of_span_tokens.append(token_strings[i])
|
355 |
+
|
356 |
+
annotated.extend(out_of_span_tokens)
|
357 |
+
|
358 |
+
return [x for x in reversed(annotated)]
|
359 |
+
|
360 |
+
# Define function to generate text based on input
|
361 |
+
def generate_text(generation_kwargs, output_field):
|
362 |
+
|
363 |
+
# Function to generate text in a separate thread
|
364 |
+
def generate_async():
|
365 |
+
model.generate(**generation_kwargs)
|
366 |
+
|
367 |
+
# Start text generation in a separate thread
|
368 |
+
thread = Thread(target=generate_async)
|
369 |
+
thread.start()
|
370 |
+
|
371 |
+
# Display generated text as it becomes available
|
372 |
+
text_tokenwise = ""
|
373 |
+
text_spans = ""
|
374 |
+
removed_spans = ""
|
375 |
+
tags = []
|
376 |
+
spans = []
|
377 |
+
for new_text in streamer:
|
378 |
+
if new_text[1] is not None and new_text[2] != ['']:
|
379 |
+
text_tokenwise = ""
|
380 |
+
tags.extend(new_text[1])
|
381 |
+
spans.extend(new_text[-1])
|
382 |
+
|
383 |
+
# Tokenwise Classification
|
384 |
+
for tk, pred in zip(new_text[2],tags):
|
385 |
+
if pred != 0:
|
386 |
+
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
|
387 |
+
if tk.startswith(" "):
|
388 |
+
text_tokenwise += " "
|
389 |
+
text_tokenwise += f"<span class='tooltip highlight' data-tooltip-text='{new_tags[pred]}' style='{style}'>{tk}</span>"
|
390 |
+
else:
|
391 |
+
text_tokenwise += tk
|
392 |
+
|
393 |
+
# Span Classification
|
394 |
+
text_spans = ""
|
395 |
+
if len(spans) > 0:
|
396 |
+
filtered_spans = remove_overlapping_spans(spans)
|
397 |
+
text_spans = generate_html_no_overlap(new_text[2], filtered_spans)
|
398 |
+
if len(spans) - len(filtered_spans) > 0:
|
399 |
+
removed_spans = f"{len(spans) - len(filtered_spans)} span(s) hidden due to overlap."
|
400 |
+
else:
|
401 |
+
for tk in new_text[2]:
|
402 |
+
text_spans += f"{tk}"
|
403 |
+
|
404 |
+
# Spanwise Classification
|
405 |
+
annotated_tokens = generate_html_spanwise(new_text[2], tags, [x for x in filter_spans(spans)[0]], tok)
|
406 |
+
generated_text_spanwise = tok.convert_tokens_to_string(annotated_tokens).replace("<|endoftext|>", "")
|
407 |
+
|
408 |
+
output_field.empty()
|
409 |
+
output = f"{css}"
|
410 |
+
output += generated_text_spanwise.replace("\n", " ").replace("$", "$") + "\n<br>"
|
411 |
+
output += "<details><summary>Show tokenwise classification</summary>\n" + text_tokenwise.replace("\n", " ").replace("$", "\\$")
|
412 |
+
#output += "</details><details><summary>Show spans</summary>\n" + text_spans.replace("\n", " ").replace("$", "\\$")
|
413 |
+
if removed_spans != "":
|
414 |
+
output += f"<br><br><i>({removed_spans})</i>"
|
415 |
+
output += "</details>"
|
416 |
+
output_field.write(output, unsafe_allow_html=True)
|
417 |
+
|
418 |
+
# Input field
|
419 |
+
input_text = st.text_area("Enter prompt for completion", "")
|
420 |
+
|
421 |
+
# Sidebar for customizing generation parameters
|
422 |
+
with st.sidebar:
|
423 |
+
st.subheader("Generation Parameters")
|
424 |
+
max_new_tokens = st.slider("Max New Tokens", min_value=1, max_value=100, value=30)
|
425 |
+
repetition_penalty = st.slider("Repetition Penalty", min_value=1.0, max_value=2.0, value=1.2)
|
426 |
+
do_sample = st.checkbox("Do Sample", value=True)
|
427 |
+
temperature = st.slider("Temperature", min_value=0.1, max_value=2.0, value=1.0)
|
428 |
+
top_p = st.slider("Top-p", min_value=0.1, max_value=1.0, value=0.3)
|
429 |
+
top_k = st.slider("Top-k", min_value=10, max_value=100, value=50)
|
430 |
+
typical_p = st.slider("Typical P", min_value=0.1, max_value=1.0, value=1.0)
|
431 |
+
|
432 |
+
# Button to generate text
|
433 |
+
if st.button("Generate"):
|
434 |
+
if input_text:
|
435 |
+
output_field = st.empty()
|
436 |
+
inputs = tok([" " + input_text], return_tensors="pt").to(model.device)
|
437 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens,
|
438 |
+
repetition_penalty=repetition_penalty, temperature=temperature,
|
439 |
+
top_p=top_p, top_k=top_k, do_sample=do_sample, typical_p=typical_p)
|
440 |
+
generate_text(generation_kwargs, output_field)
|
441 |
+
else:
|
442 |
+
st.warning("Please enter some text first.")
|