Spaces:
Sleeping
Sleeping
File size: 11,352 Bytes
6ed21b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import argparse
import functools
import itertools
import os.path
import time
import torch
import torch.nn as nn
import numpy as np
import evaluate
import treebanks
from benepar import Parser, InputSentence
from benepar.partitioned_transformer import PartitionedMultiHeadAttention
import json
def format_elapsed(start_time):
elapsed_time = int(time.time() - start_time)
minutes, seconds = divmod(elapsed_time, 60)
hours, minutes = divmod(minutes, 60)
days, hours = divmod(hours, 24)
elapsed_string = "{}h{:02}m{:02}s".format(hours, minutes, seconds)
if days > 0:
elapsed_string = "{}d{}".format(days, elapsed_string)
return elapsed_string
def inputs_from_treebank(treebank, predict_tags):
return [
InputSentence(
words=example.words,
space_after=example.space_after,
tags=None if predict_tags else [tag for _, tag in example.pos()],
escaped_words=list(example.leaves()),
)
for example in treebank
]
def run_test(args):
print("Loading test trees from {}...".format(args.test_path))
test_treebank = treebanks.load_trees(
args.test_path, args.test_path_text, args.text_processing
)
print("Loaded {:,} test examples.".format(len(test_treebank)))
print("Loading model from {}...".format(args.model_path))
parser = Parser(args.model_path, batch_size=args.batch_size)
print("Parsing test sentences...")
start_time = time.time()
if args.output_path == "-":
output_file = sys.stdout
elif args.output_path:
output_file = open(args.output_path, "w")
else:
output_file = None
test_predicted = []
for predicted_tree in parser.parse_sents(
inputs_from_treebank(test_treebank, predict_tags=args.predict_tags)
):
test_predicted.append(predicted_tree)
if output_file is not None:
print(tree.pformat(margin=1e100), file=output_file)
test_fscore = evaluate.evalb(args.evalb_dir, test_treebank.trees, test_predicted)
print(
"test-fscore {} "
"test-elapsed {}".format(
test_fscore,
format_elapsed(start_time),
)
)
def get_compressed_state_dict(model):
state_dict = model.state_dict()
for module_name, module in model.named_modules():
if not isinstance(
module, (nn.Linear, nn.Embedding, PartitionedMultiHeadAttention)
):
continue
elif "token_type_embeddings" in module_name:
continue
elif "position_embeddings" in module_name:
continue
elif "f_tag" in module_name or "f_label" in module_name:
continue
elif "project_pretrained" in module_name:
continue
if isinstance(module, PartitionedMultiHeadAttention):
weight_names = [
module_name + "." + param
for param in ("w_qkv_c", "w_qkv_p", "w_o_c", "w_o_p")
]
else:
weight_names = [module_name + ".weight"]
for weight_name in weight_names:
weight = state_dict[weight_name]
if weight.shape.numel() <= 2048:
continue
print(weight_name, ":", weight.shape.numel(), "parameters")
if isinstance(module, nn.Embedding) or "word_embeddings" in module_name or "shared.weight" in weight_name:
is_embedding = True
else:
is_embedding = False
num_steps = 64
use_histogram = True
if "pooler.dense.weight" in weight_name:
weight.data.zero_()
continue
elif "pretrained_model" in weight_name and not is_embedding:
num_steps = 128
if not model.retokenizer.is_t5:
use_histogram = False
elif isinstance(module, PartitionedMultiHeadAttention):
num_steps = 128
if use_histogram:
observer = torch.quantization.HistogramObserver()
observer.dst_nbins = num_steps
observer(weight)
scale, zero_point = observer.calculate_qparams()
scale = scale.item()
zero_point = zero_point.item()
cluster_centers = (
scale * (np.arange(0, 256, 256 / num_steps) - zero_point)[:, None]
)
cluster_centers = np.asarray(cluster_centers, dtype=np.float32)
else:
weight_np = weight.cpu().detach().numpy()
min_val = weight_np.min()
max_val = weight_np.max()
bucket_width = (max_val - min_val) / num_steps
cluster_centers = (
min_val
+ (np.arange(num_steps, dtype=np.float32) + 0.5) * bucket_width
)
cluster_centers = cluster_centers.reshape((-1, 1))
codebook = torch.tensor(
cluster_centers, dtype=weight.dtype, device=weight.device
)
distances = weight.data.reshape((-1, 1)) - codebook.t()
codes = torch.argmin(distances ** 2, dim=-1)
weight_rounded = codebook[codes].reshape(weight.shape)
weight.data.copy_(weight_rounded)
return state_dict
def run_export(args):
if args.test_path is not None:
print("Loading test trees from {}...".format(args.test_path))
test_treebank = treebanks.load_trees(
args.test_path, args.test_path_text, args.text_processing
)
print("Loaded {:,} test examples.".format(len(test_treebank)))
else:
test_treebank = None
print("Loading model from {}...".format(args.model_path))
parser = Parser(args.model_path, batch_size=args.batch_size)
model = parser._parser
if model.pretrained_model is None:
raise ValueError(
"Exporting is only defined when using a pre-trained transformer "
"encoder. For CharLSTM-based model, just distribute the pytorch "
"checkpoint directly. You may manually delete the 'optimizer' "
"field to reduce file size by discarding the optimizer state."
)
if test_treebank is not None:
print("Parsing test sentences (predicting tags)...")
start_time = time.time()
test_inputs = inputs_from_treebank(test_treebank, predict_tags=True)
test_predicted = list(parser.parse_sents(test_inputs))
test_fscore = evaluate.evalb(args.evalb_dir, test_treebank.trees, test_predicted)
test_elapsed = format_elapsed(start_time)
print("test-fscore {} test-elapsed {}".format(test_fscore, test_elapsed))
print("Parsing test sentences (not predicting tags)...")
start_time = time.time()
test_inputs = inputs_from_treebank(test_treebank, predict_tags=False)
notags_test_predicted = list(parser.parse_sents(test_inputs))
notags_test_fscore = evaluate.evalb(
args.evalb_dir, test_treebank.trees, notags_test_predicted
)
notags_test_elapsed = format_elapsed(start_time)
print(
"test-fscore {} test-elapsed {}".format(notags_test_fscore, notags_test_elapsed)
)
print("Exporting tokenizer...")
model.retokenizer.tokenizer.save_pretrained(args.output_dir)
print("Exporting config...")
config = model.pretrained_model.config
config.benepar = model.config
config.save_pretrained(args.output_dir)
if args.compress:
print("Compressing weights...")
state_dict = get_compressed_state_dict(model.cpu())
print("Saving weights...")
else:
print("Exporting weights...")
state_dict = model.cpu().state_dict()
torch.save(state_dict, os.path.join(args.output_dir, "benepar_model.bin"))
del model, parser, state_dict
print("Loading exported model from {}...".format(args.output_dir))
exported_parser = Parser(args.output_dir, batch_size=args.batch_size)
if test_treebank is None:
print()
print("Export complete.")
print("Did not verify model accuracy because no treebank was provided.")
return
print("Parsing test sentences (predicting tags)...")
start_time = time.time()
test_inputs = inputs_from_treebank(test_treebank, predict_tags=True)
exported_predicted = list(exported_parser.parse_sents(test_inputs))
exported_fscore = evaluate.evalb(
args.evalb_dir, test_treebank.trees, exported_predicted
)
exported_elapsed = format_elapsed(start_time)
print(
"exported-fscore {} exported-elapsed {}".format(
exported_fscore, exported_elapsed
)
)
print("Parsing test sentences (not predicting tags)...")
start_time = time.time()
test_inputs = inputs_from_treebank(test_treebank, predict_tags=False)
notags_exported_predicted = list(exported_parser.parse_sents(test_inputs))
notags_exported_fscore = evaluate.evalb(
args.evalb_dir, test_treebank.trees, notags_exported_predicted
)
notags_exported_elapsed = format_elapsed(start_time)
print(
"exported-fscore {} exported-elapsed {}".format(
notags_exported_fscore, notags_exported_elapsed
)
)
print()
print("Export and verification complete.")
fscore_delta = evaluate.FScore(
recall=notags_exported_fscore.recall - notags_test_fscore.recall,
precision=notags_exported_fscore.precision - notags_test_fscore.precision,
fscore=notags_exported_fscore.fscore - notags_test_fscore.fscore,
complete_match=(
notags_exported_fscore.complete_match - notags_test_fscore.complete_match
),
tagging_accuracy=(
exported_fscore.tagging_accuracy - test_fscore.tagging_accuracy
),
)
print("delta-fscore {}".format(fscore_delta))
def main():
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers()
subparser = subparsers.add_parser("test")
subparser.set_defaults(callback=run_test)
subparser.add_argument("--model-path", type=str, required=True)
subparser.add_argument("--evalb-dir", default="EVALB/")
subparser.add_argument("--test-path", type=str, required=True)
subparser.add_argument("--test-path-text", type=str)
subparser.add_argument("--text-processing", default="default")
subparser.add_argument("--predict-tags", action="store_true")
subparser.add_argument("--output-path", default="")
subparser.add_argument("--batch-size", type=int, default=8)
subparser = subparsers.add_parser("export")
subparser.set_defaults(callback=run_export)
subparser.add_argument("--model-path", type=str, required=True)
subparser.add_argument("--output-dir", type=str, required=True)
subparser.add_argument("--evalb-dir", default="EVALB/")
subparser.add_argument("--test-path", type=str, default=None)
subparser.add_argument("--test-path-text", type=str)
subparser.add_argument("--text-processing", default="default")
subparser.add_argument("--compress", action="store_true")
subparser.add_argument("--batch-size", type=int, default=8)
args = parser.parse_args()
args.callback(args)
if __name__ == "__main__":
main()
|