mhg-parsing / parsing /src /benepar /decode_chart.py
nielklug's picture
init
6ed21b9
"""
Parsing formulated as span classification (https://arxiv.org/abs/1705.03919)
"""
import nltk
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_struct
from .parse_base import CompressedParserOutput
def pad_charts(charts, padding_value=-100):
"""Pad a list of variable-length charts with `padding_value`."""
batch_size = len(charts)
max_len = max(chart.shape[0] for chart in charts)
padded_charts = torch.full(
(batch_size, max_len, max_len),
padding_value,
dtype=charts[0].dtype,
device=charts[0].device,
)
for i, chart in enumerate(charts):
chart_size = chart.shape[0]
padded_charts[i, :chart_size, :chart_size] = chart
return padded_charts
def collapse_unary_strip_pos(tree, strip_top=True):
"""Collapse unary chains and strip part of speech tags."""
def strip_pos(tree):
if len(tree) == 1 and isinstance(tree[0], str):
return tree[0]
else:
return nltk.tree.Tree(tree.label(), [strip_pos(child) for child in tree])
collapsed_tree = strip_pos(tree)
collapsed_tree.collapse_unary(collapsePOS=True, joinChar="::")
if collapsed_tree.label() in ("TOP", "ROOT", "S1", "VROOT"):
if strip_top:
if len(collapsed_tree) == 1:
collapsed_tree = collapsed_tree[0]
else:
collapsed_tree.set_label("")
elif len(collapsed_tree) == 1:
collapsed_tree[0].set_label(
collapsed_tree.label() + "::" + collapsed_tree[0].label())
collapsed_tree = collapsed_tree[0]
return collapsed_tree
def _get_labeled_spans(tree, spans_out, start):
if isinstance(tree, str):
return start + 1
assert len(tree) > 1 or isinstance(
tree[0], str
), "Must call collapse_unary_strip_pos first"
end = start
for child in tree:
end = _get_labeled_spans(child, spans_out, end)
# Spans are returned as closed intervals on both ends
spans_out.append((start, end - 1, tree.label()))
return end
def get_labeled_spans(tree):
"""Converts a tree into a list of labeled spans.
Args:
tree: an nltk.tree.Tree object
Returns:
A list of (span_start, span_end, span_label) tuples. The start and end
indices indicate the first and last words of the span (a closed
interval). Unary chains are collapsed, so e.g. a (S (VP ...)) will
result in a single span labeled "S+VP".
"""
tree = collapse_unary_strip_pos(tree)
spans_out = []
_get_labeled_spans(tree, spans_out, start=0)
return spans_out
def uncollapse_unary(tree, ensure_top=False):
"""Un-collapse unary chains."""
if isinstance(tree, str):
return tree
else:
labels = tree.label().split("::")
if ensure_top and labels[0] != "TOP":
labels = ["TOP"] + labels
children = []
for child in tree:
child = uncollapse_unary(child)
children.append(child)
for label in labels[::-1]:
children = [nltk.tree.Tree(label, children)]
return children[0]
class ChartDecoder:
"""A chart decoder for parsing formulated as span classification."""
def __init__(self, label_vocab, force_root_constituent=True):
"""Constructs a new ChartDecoder object.
Args:
label_vocab: A mapping from span labels to integer indices.
"""
self.label_vocab = label_vocab
self.label_from_index = {i: label for label, i in label_vocab.items()}
self.force_root_constituent = force_root_constituent
@staticmethod
def build_vocab(trees):
label_set = set()
for tree in trees:
for _, _, label in get_labeled_spans(tree):
if label:
label_set.add(label)
label_set = [""] + sorted(label_set)
return {label: i for i, label in enumerate(label_set)}
@staticmethod
def infer_force_root_constituent(trees):
for tree in trees:
for _, _, label in get_labeled_spans(tree):
if not label:
return False
return True
def chart_from_tree(self, tree):
spans = get_labeled_spans(tree)
num_words = len(tree.leaves())
chart = np.full((num_words, num_words), -100, dtype=int)
chart = np.tril(chart, -1)
# Now all invalid entries are filled with -100, and valid entries with 0
for start, end, label in spans:
# Previously unseen unary chains can occur in the dev/test sets.
# For now, we ignore them and don't mark the corresponding chart
# entry as a constituent.
if label in self.label_vocab:
chart[start, end] = self.label_vocab[label]
return chart
def charts_from_pytorch_scores_batched(self, scores, lengths):
"""Runs CKY to recover span labels from scores (e.g. logits).
This method uses pytorch-struct to speed up decoding compared to the
pure-Python implementation of CKY used by tree_from_scores().
Args:
scores: a pytorch tensor of shape (batch size, max length,
max length, label vocab size).
lengths: a pytorch tensor of shape (batch size,)
Returns:
A list of numpy arrays, each of shape (sentence length, sentence
length).
"""
scores = scores.detach()
scores = scores - scores[..., :1]
if self.force_root_constituent:
scores[torch.arange(scores.shape[0]), 0, lengths - 1, 0] -= 1e9
dist = torch_struct.TreeCRF(scores, lengths=lengths)
amax = dist.argmax
amax[..., 0] += 1e-9
padded_charts = amax.argmax(-1)
padded_charts = padded_charts.detach().cpu().numpy()
return [
chart[:length, :length] for chart, length in zip(padded_charts, lengths)
]
def compressed_output_from_chart(self, chart):
chart_with_filled_diagonal = chart.copy()
np.fill_diagonal(chart_with_filled_diagonal, 1)
chart_with_filled_diagonal[0, -1] = 1
starts, inclusive_ends = np.where(chart_with_filled_diagonal)
preorder_sort = np.lexsort((-inclusive_ends, starts))
starts = starts[preorder_sort]
inclusive_ends = inclusive_ends[preorder_sort]
labels = chart[starts, inclusive_ends]
ends = inclusive_ends + 1
return CompressedParserOutput(starts=starts, ends=ends, labels=labels)
def tree_from_chart(self, chart, leaves):
compressed_output = self.compressed_output_from_chart(chart)
return compressed_output.to_tree(leaves, self.label_from_index)
def tree_from_scores(self, scores, leaves):
"""Runs CKY to decode a tree from scores (e.g. logits).
If speed is important, consider using charts_from_pytorch_scores_batched
followed by compressed_output_from_chart or tree_from_chart instead.
Args:
scores: a chart of scores (or logits) of shape
(sentence length, sentence length, label vocab size). The first
two dimensions may be padded to a longer length, but all padded
values will be ignored.
leaves: the leaf nodes to use in the constructed tree. These
may be of type str or nltk.Tree, or (word, tag) tuples that
will be used to construct the leaf node objects.
Returns:
An nltk.Tree object.
"""
leaves = [
nltk.Tree(node[1], [node[0]]) if isinstance(node, tuple) else node
for node in leaves
]
chart = {}
scores = scores - scores[:, :, 0, None]
for length in range(1, len(leaves) + 1):
for left in range(0, len(leaves) + 1 - length):
right = left + length
label_scores = scores[left, right - 1]
label_scores = label_scores - label_scores[0]
argmax_label_index = int(
label_scores.argmax()
if length < len(leaves) or not self.force_root_constituent
else label_scores[1:].argmax() + 1
)
argmax_label = self.label_from_index[argmax_label_index]
label = argmax_label
label_score = label_scores[argmax_label_index]
if length == 1:
tree = leaves[left]
if label:
tree = nltk.tree.Tree(label, [tree])
chart[left, right] = [tree], label_score
continue
best_split = max(
range(left + 1, right),
key=lambda split: (chart[left, split][1] + chart[split, right][1]),
)
left_trees, left_score = chart[left, best_split]
right_trees, right_score = chart[best_split, right]
children = left_trees + right_trees
if label:
children = [nltk.tree.Tree(label, children)]
chart[left, right] = (children, label_score + left_score + right_score)
children, score = chart[0, len(leaves)]
tree = nltk.tree.Tree("TOP", children)
tree = uncollapse_unary(tree)
return tree
class SpanClassificationMarginLoss(nn.Module):
def __init__(self, force_root_constituent=True, reduction="mean"):
super().__init__()
self.force_root_constituent = force_root_constituent
if reduction not in ("none", "mean", "sum"):
raise ValueError(f"Invalid value for reduction: {reduction}")
self.reduction = reduction
def forward(self, logits, labels):
gold_event = F.one_hot(F.relu(labels), num_classes=logits.shape[-1])
logits = logits - logits[..., :1]
lengths = (labels[:, 0, :] != -100).sum(-1)
augment = (1 - gold_event).to(torch.float)
if self.force_root_constituent:
augment[torch.arange(augment.shape[0]), 0, lengths - 1, 0] -= 1e9
dist = torch_struct.TreeCRF(logits + augment, lengths=lengths)
pred_score = dist.max
gold_score = (logits * gold_event).sum((1, 2, 3))
margin_losses = F.relu(pred_score - gold_score)
if self.reduction == "none":
return margin_losses
elif self.reduction == "mean":
return margin_losses.mean()
elif self.reduction == "sum":
return margin_losses.sum()
else:
assert False, f"Unexpected reduction: {self.reduction}"