multimodalart's picture
Update app.py
89d8ace verified
raw
history blame
6.19 kB
from __future__ import annotations
import os
import gradio as gr
import torch
from gradio_client import Client
from gradio_client.client import Job
DESCRIPTION = "# Comparing image captioning models"
ORIGINAL_SPACE_INFO = """\
- [GIT-large fine-tuned on COCO](https://huggingface.co/spaces/library-samples/image-captioning-with-git)
- [BLIP-large](https://huggingface.co/spaces/library-samples/image-captioning-with-blip)
- [BLIP-2 OPT 6.7B](https://huggingface.co/spaces/merve/BLIP2-with-transformers)
- [BLIP-2 T5-XXL](https://huggingface.co/spaces/hysts/BLIP2-with-transformers)
- [InstructBLIP](https://huggingface.co/spaces/library-samples/InstructBLIP)
- [Fuyu-8B](https://huggingface.co/spaces/adept/fuyu-8b-demo)
"""
torch.hub.download_url_to_file("http://images.cocodataset.org/val2017/000000039769.jpg", "cats.jpg")
torch.hub.download_url_to_file(
"https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png", "stop_sign.png"
)
torch.hub.download_url_to_file(
"https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg", "astronaut.jpg"
)
def generate_caption_git(image_path: str, return_job: bool = False) -> str | Job:
try:
client = Client("hysts/image-captioning-with-git")
fn = client.submit if return_job else client.predict
return fn(image_path, api_name="/caption")
except Exception:
gr.Warning("The GIT-large Space is currently unavailable. Please try again later.")
return ""
def generate_caption_blip(image_path: str, return_job: bool = False) -> str | Job:
try:
client = Client("hysts/image-captioning-with-blip")
fn = client.submit if return_job else client.predict
return fn(image_path, "A picture of", api_name="/caption")
except Exception:
gr.Warning("The BLIP-large Space is currently unavailable. Please try again later.")
return ""
def generate_caption_blip2_opt(image_path: str, return_job: bool = False) -> str | Job:
try:
client = Client("merve/BLIP2-with-transformers")
fn = client.submit if return_job else client.predict
return fn(
image_path,
"Beam search",
1, # temperature
1, # length penalty
1.5, # repetition penalty
api_name="/caption",
)
except Exception:
gr.Warning("The BLIP2 OPT6.7B Space is currently unavailable. Please try again later.")
return ""
def generate_caption_blip2_t5xxl(image_path: str, return_job: bool = False) -> str | Job:
try:
client = Client("hysts/BLIP2-with-transformers")
fn = client.submit if return_job else client.predict
return fn(
image_path,
"Beam search",
1, # temperature
1, # length penalty
1.5, # repetition penalty
50, # max length
1, # min length
5, # number of beams
0.9, # top p
api_name="/caption",
)
except Exception:
gr.Warning("The BLIP2 T5-XXL Space is currently unavailable. Please try again later.")
return ""
def generate_caption_instructblip(image_path: str, return_job: bool = False) -> str | Job:
try:
client = Client("hysts/InstructBLIP")
fn = client.submit if return_job else client.predict
return fn(
image_path,
"Describe the image.",
"Beam search",
5, # beam size
256, # max length
1, # min length
0.9, # top p
1.5, # repetition penalty
1.0, # length penalty
1.0, # temperature
api_name="/run",
)
except Exception:
gr.Warning("The InstructBLIP Space is currently unavailable. Please try again later.")
return ""
def generate_caption_fuyu(image_path: str, return_job: bool = False) -> str | Job:
try:
client = Client("adept/fuyu-8b-demo")
fn = client.submit if return_job else client.predict
return fn(image_path, "Generate a coco style caption.\n", fn_index=3)
except Exception:
gr.Warning("The Fuyu-8B Space is currently unavailable. Please try again later.")
return ""
def generate_captions(image_path: str) -> tuple[str, str, str, str, str, str]:
jobs = [
generate_caption_git(image_path, return_job=True),
generate_caption_blip(image_path, return_job=True),
generate_caption_blip2_opt(image_path, return_job=True),
generate_caption_blip2_t5xxl(image_path, return_job=True),
generate_caption_instructblip(image_path, return_job=True),
generate_caption_fuyu(image_path, return_job=True),
]
return tuple(job.result() if job else "" for job in jobs)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath")
run_button = gr.Button("Caption")
with gr.Column():
out_git = gr.Textbox(label="GIT-large fine-tuned on COCO")
out_blip = gr.Textbox(label="BLIP-large")
out_blip2_opt = gr.Textbox(label="BLIP-2 OPT 6.7B")
out_blip2_t5xxl = gr.Textbox(label="BLIP-2 T5-XXL")
out_instructblip = gr.Textbox(label="InstructBLIP")
out_fuyu = gr.Textbox(label="Fuyu-8B")
outputs = [
out_git,
out_blip,
out_blip2_opt,
out_blip2_t5xxl,
out_instructblip,
out_fuyu,
]
gr.Examples(
examples=[
"cats.jpg",
"stop_sign.png",
"astronaut.jpg",
],
inputs=input_image,
outputs=outputs,
fn=generate_captions,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
with gr.Accordion(label="The original Spaces can be found here:", open=False):
gr.Markdown(ORIGINAL_SPACE_INFO)
run_button.click(
fn=generate_captions,
inputs=input_image,
outputs=outputs,
api_name="caption",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()