Add link to model doc
Browse files
app.py
CHANGED
@@ -9,6 +9,8 @@ import cv2
|
|
9 |
|
10 |
from unilm.dit.object_detection.ditod import add_vit_config
|
11 |
|
|
|
|
|
12 |
from detectron2.config import CfgNode as CN
|
13 |
from detectron2.config import get_cfg
|
14 |
from detectron2.utils.visualizer import ColorMode, Visualizer
|
@@ -27,8 +29,7 @@ cfg.merge_from_file("cascade_dit_base.yml")
|
|
27 |
cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth"
|
28 |
|
29 |
# Step 3: set device
|
30 |
-
|
31 |
-
cfg.MODEL.DEVICE='cpu'
|
32 |
|
33 |
# Step 4: define model
|
34 |
predictor = DefaultPredictor(cfg)
|
@@ -53,7 +54,7 @@ def analyze_image(img):
|
|
53 |
|
54 |
title = "Interactive demo: Document Layout Analysis with DiT"
|
55 |
description = "Demo for Microsoft's DiT, the Document Image Transformer for state-of-the-art document understanding tasks. This particular model is fine-tuned on PubLayNet, a large dataset for document layout analysis (read more at the links below). To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
|
56 |
-
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.02378' target='_blank'>DiT: Self-supervised Pre-training for Document Image Transformer</a> | <a href='https://github.com/microsoft/unilm/dit' target='_blank'>Github Repo</a></p>"
|
57 |
examples =[['publaynet_example.jpeg']]
|
58 |
css = ".output-image, .input-image, .image-preview {height: 600px !important}"
|
59 |
|
|
|
9 |
|
10 |
from unilm.dit.object_detection.ditod import add_vit_config
|
11 |
|
12 |
+
import torch
|
13 |
+
|
14 |
from detectron2.config import CfgNode as CN
|
15 |
from detectron2.config import get_cfg
|
16 |
from detectron2.utils.visualizer import ColorMode, Visualizer
|
|
|
29 |
cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth"
|
30 |
|
31 |
# Step 3: set device
|
32 |
+
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
33 |
|
34 |
# Step 4: define model
|
35 |
predictor = DefaultPredictor(cfg)
|
|
|
54 |
|
55 |
title = "Interactive demo: Document Layout Analysis with DiT"
|
56 |
description = "Demo for Microsoft's DiT, the Document Image Transformer for state-of-the-art document understanding tasks. This particular model is fine-tuned on PubLayNet, a large dataset for document layout analysis (read more at the links below). To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
|
57 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.02378' target='_blank'>DiT: Self-supervised Pre-training for Document Image Transformer</a> | <a href='https://github.com/microsoft/unilm/tree/master/dit' target='_blank'>Github Repo</a></p> | <a href='https://huggingface.co/docs/transformers/master/en/model_doc/dit' target='_blank'>HuggingFace model doc</a></p>"
|
58 |
examples =[['publaynet_example.jpeg']]
|
59 |
css = ".output-image, .input-image, .image-preview {height: 600px !important}"
|
60 |
|