nielsr HF staff commited on
Commit
994b44c
1 Parent(s): a1d450a

Create new file

Browse files
Files changed (1) hide show
  1. app.py +63 -0
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from PIL import Image
3
+ import gradio as gr
4
+
5
+ import torch
6
+ from transformers import DonutProcessor, VisionEncoderDecoderModel
7
+
8
+ processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
9
+ model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
10
+
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ model.to(device)
13
+
14
+ def process_document(image):
15
+ # prepare encoder inputs
16
+ pixel_values = processor(image, return_tensors="pt").pixel_values
17
+
18
+ # prepare decoder inputs
19
+ task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
20
+ question = "When is the coffee break?"
21
+ prompt = task_prompt.replace("{user_input}", question)
22
+ decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
23
+
24
+ # generate answer
25
+ outputs = model.generate(
26
+ pixel_values.to(device),
27
+ decoder_input_ids=decoder_input_ids.to(device),
28
+ max_length=model.decoder.config.max_position_embeddings,
29
+ early_stopping=True,
30
+ pad_token_id=processor.tokenizer.pad_token_id,
31
+ eos_token_id=processor.tokenizer.eos_token_id,
32
+ use_cache=True,
33
+ num_beams=1,
34
+ bad_words_ids=[[processor.tokenizer.unk_token_id]],
35
+ return_dict_in_generate=True,
36
+ )
37
+
38
+ # postprocess
39
+ sequence = processor.batch_decode(outputs.sequences)[0]
40
+ sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
41
+ sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
42
+
43
+ return processor.token2json(sequence)
44
+
45
+ image = Image.open("./example_1.png")
46
+ image.save("example_1.png")
47
+
48
+ demo = gr.Interface(
49
+ fn=process_document,
50
+ inputs= gr.inputs.Image(type="pil"),
51
+ outputs="json",
52
+ title=f"Interactive demo: Donut 🍩 for DocVQA",
53
+ description="""This model is fine-tuned on the DocVQA dataset. <br>
54
+ Documentation: https://huggingface.co/docs/transformers/main/en/model_doc/donut
55
+ Notebooks: https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut
56
+
57
+ More details are available at:
58
+ - Paper: https://arxiv.org/abs/2111.15664
59
+ - Original repository: https://github.com/clovaai/donut""",
60
+ examples=[["example_1.png"]],
61
+ cache_examples=False,
62
+ )
63
+ demo.launch()