import re from PIL import Image import gradio as gr import torch from transformers import DonutProcessor, VisionEncoderDecoderModel processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def process_document(image): # prepare encoder inputs pixel_values = processor(image, return_tensors="pt").pixel_values # prepare decoder inputs task_prompt = "{user_input}" question = "When is the coffee break?" prompt = task_prompt.replace("{user_input}", question) decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids # generate answer outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # postprocess sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token return processor.token2json(sequence) image = Image.open("./example_1.png") image.save("example_1.png") demo = gr.Interface( fn=process_document, inputs= gr.inputs.Image(type="pil"), outputs="json", title=f"Interactive demo: Donut 🍩 for DocVQA", description="""This model is fine-tuned on the DocVQA dataset.
Documentation: https://huggingface.co/docs/transformers/main/en/model_doc/donut Notebooks: https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut More details are available at: - Paper: https://arxiv.org/abs/2111.15664 - Original repository: https://github.com/clovaai/donut""", examples=[["example_1.png"]], cache_examples=False, ) demo.launch()