Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,25 +2,13 @@ import gradio as gr
|
|
2 |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
3 |
import torch
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
7 |
|
8 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
9 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
10 |
|
11 |
-
def compute_depth(depth, bits):
|
12 |
-
depth_min = depth.min()
|
13 |
-
depth_max = depth.max()
|
14 |
-
|
15 |
-
max_val = (2 ** (8 * bits)) - 1
|
16 |
-
|
17 |
-
if depth_max - depth_min > np.finfo("float").eps:
|
18 |
-
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
19 |
-
else:
|
20 |
-
out = np.zeros(depth.shape, dtype=depth.dtype)
|
21 |
-
|
22 |
-
return out/65536
|
23 |
-
|
24 |
def process_image(image):
|
25 |
# prepare image for the model
|
26 |
encoding = feature_extractor(image, return_tensors="pt")
|
@@ -37,9 +25,10 @@ def process_image(image):
|
|
37 |
mode="bicubic",
|
38 |
align_corners=False,
|
39 |
)
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
return result
|
45 |
|
@@ -49,7 +38,7 @@ examples =[['cats.jpg']]
|
|
49 |
|
50 |
iface = gr.Interface(fn=process_image,
|
51 |
inputs=gr.inputs.Image(type="pil"),
|
52 |
-
outputs=gr.outputs.Image(label="predicted depth"),
|
53 |
title=title,
|
54 |
description=description,
|
55 |
examples=examples,
|
|
|
2 |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
|
7 |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
8 |
|
9 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
10 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def process_image(image):
|
13 |
# prepare image for the model
|
14 |
encoding = feature_extractor(image, return_tensors="pt")
|
|
|
25 |
mode="bicubic",
|
26 |
align_corners=False,
|
27 |
)
|
28 |
+
output = prediction.cpu().numpy()
|
29 |
+
formatted = (output * 255 / np.max(output)).astype('uint8')
|
30 |
+
img = Image.fromarray(formatted)
|
31 |
+
return img
|
32 |
|
33 |
return result
|
34 |
|
|
|
38 |
|
39 |
iface = gr.Interface(fn=process_image,
|
40 |
inputs=gr.inputs.Image(type="pil"),
|
41 |
+
outputs=gr.outputs.Image(type="pil", label="predicted depth"),
|
42 |
title=title,
|
43 |
description=description,
|
44 |
examples=examples,
|