nielsr's picture
nielsr HF staff
Create app.py
eed789a
raw
history blame
2.86 kB
import os
os.system('pip install git+https://github.com/huggingface/transformers --upgrade')
import gradio as gr
from transformers import ImageGPTFeatureExtractor, ImageGPTForCausalLM
import torch
import requests
from PIL import Image
import os
import matplotlib.pyplot as plt
feature_extractor = ImageGPTFeatureExtractor.from_pretrained("openai/imagegpt-small")
model = ImageGPTForCausalLM.from_pretrained("openai/imagegpt-small")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# load image examples
urls = ['https://assetsnffrgf-a.akamaihd.net/assets/m/502013285/univ/art/502013285_univ_sqr_xl.jpg']
for idx, url in enumerate(urls):
image = Image.open(requests.get(url, stream=True).raw)
image.save(f"image_{idx}.png")
def process_image(image):
# prepare 8 images, shape (8, 1024)
encoding = feature_extractor([image for _ in range(8)], return_tensors="pt")
# create primers
samples = encoding.pixel_values.numpy()
n_px_crop = 16
primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens
# generate (no beam search)
context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1)
context = torch.tensor(context).to(device)
output = model.generate(input_ids=context, max_length=n_px*n_px + 1, temperature=1.0, do_sample=True, top_k=40)
# decode back to images
samples = output[:,1:].cpu().detach().numpy()
samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples] # convert color cluster tokens back to pixels
# save as list of files
completions = []
output_dir = '.'
for i in range(len(samples_img)):
fname = os.path.join(output_dir, "completion" + str(i) + ".png")
plt.imsave(fname=fname, arr=samples_img[i], format='png')
completions.append(fname)
return completions
title = "Interactive demo: ImageGPT"
description = "Demo for OpenAI's ImageGPT: Generative Pretraining from Pixels. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>ImageGPT: Generative Pretraining from Pixels</a> | <a href='https://openai.com/blog/image-gpt/'>Official blog</a></p>"
examples =[["image_0.png"]]
iface = gr.Interface(fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=[gr.outputs.Image(type='file', label=f'completion_{i}') for i in range(len(samples_img))],
title=title,
description=description,
article=article,
examples=examples)
iface.launch(debug=True)