Spaces:
Runtime error
Runtime error
Add conditioned image
Browse files
app.py
CHANGED
@@ -35,6 +35,10 @@ def process_image(image):
|
|
35 |
n_px_crop = 16
|
36 |
primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens
|
37 |
|
|
|
|
|
|
|
|
|
38 |
# generate (no beam search)
|
39 |
context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1)
|
40 |
context = torch.tensor(context).to(device)
|
@@ -52,16 +56,17 @@ def process_image(image):
|
|
52 |
# return as PIL Image
|
53 |
completion = Image.fromarray(result)
|
54 |
|
55 |
-
return completion
|
56 |
|
57 |
title = "Interactive demo: ImageGPT"
|
58 |
description = "Demo for OpenAI's ImageGPT: Generative Pretraining from Pixels. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds."
|
59 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>ImageGPT: Generative Pretraining from Pixels</a> | <a href='https://openai.com/blog/image-gpt/'>Official blog</a></p>"
|
60 |
examples =[f"image_{idx}.png" for idx in range(len(urls))]
|
61 |
|
|
|
62 |
iface = gr.Interface(fn=process_image,
|
63 |
inputs=gr.inputs.Image(type="pil"),
|
64 |
-
outputs=gr.outputs.Image(type="pil"),
|
65 |
title=title,
|
66 |
description=description,
|
67 |
article=article,
|
|
|
35 |
n_px_crop = 16
|
36 |
primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens
|
37 |
|
38 |
+
# get conditioned image (from first primer tensor) by converting color clusters back to pixels
|
39 |
+
primers_img = np.reshape(np.rint(127.5 * (clusters[primers[0]] + 1.0)), [n_px_crop,n_px, 3]).astype(np.uint8)
|
40 |
+
primers_img = Image.fromarray(primers_img)
|
41 |
+
|
42 |
# generate (no beam search)
|
43 |
context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1)
|
44 |
context = torch.tensor(context).to(device)
|
|
|
56 |
# return as PIL Image
|
57 |
completion = Image.fromarray(result)
|
58 |
|
59 |
+
return [primers_img, completion]
|
60 |
|
61 |
title = "Interactive demo: ImageGPT"
|
62 |
description = "Demo for OpenAI's ImageGPT: Generative Pretraining from Pixels. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds."
|
63 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>ImageGPT: Generative Pretraining from Pixels</a> | <a href='https://openai.com/blog/image-gpt/'>Official blog</a></p>"
|
64 |
examples =[f"image_{idx}.png" for idx in range(len(urls))]
|
65 |
|
66 |
+
labels = ["Conditioned image:", "Completions:"]
|
67 |
iface = gr.Interface(fn=process_image,
|
68 |
inputs=gr.inputs.Image(type="pil"),
|
69 |
+
outputs=[gr.outputs.Image(type="pil", label=labels[idx]) for idx in range(2)],
|
70 |
title=title,
|
71 |
description=description,
|
72 |
article=article,
|