Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -149,15 +149,84 @@ def recognize_table(image):
|
|
149 |
for cell in cells:
|
150 |
draw.rectangle(cell["bbox"], outline="red")
|
151 |
|
152 |
-
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
|
155 |
def process_pdf(image):
|
156 |
cropped_table = detect_and_crop_table(image)
|
157 |
|
158 |
-
image = recognize_table(cropped_table)
|
159 |
|
160 |
-
|
|
|
|
|
|
|
|
|
161 |
|
162 |
|
163 |
title = "Demo: table detection with Table Transformer"
|
@@ -166,7 +235,7 @@ examples =[['image.png']]
|
|
166 |
|
167 |
app = gr.Interface(fn=process_pdf,
|
168 |
inputs=gr.Image(type="pil"),
|
169 |
-
outputs=gr.Image(type="pil", label="Detected table"),
|
170 |
title=title,
|
171 |
description=description,
|
172 |
examples=examples)
|
|
|
149 |
for cell in cells:
|
150 |
draw.rectangle(cell["bbox"], outline="red")
|
151 |
|
152 |
+
return image, cells
|
153 |
+
|
154 |
+
|
155 |
+
def get_cell_coordinates_by_row(table_data):
|
156 |
+
# Extract rows and columns
|
157 |
+
rows = [entry for entry in table_data if entry['label'] == 'table row']
|
158 |
+
columns = [entry for entry in table_data if entry['label'] == 'table column']
|
159 |
+
|
160 |
+
# Sort rows and columns by their Y and X coordinates, respectively
|
161 |
+
rows.sort(key=lambda x: x['bbox'][1])
|
162 |
+
columns.sort(key=lambda x: x['bbox'][0])
|
163 |
+
|
164 |
+
# Function to find cell coordinates
|
165 |
+
def find_cell_coordinates(row, column):
|
166 |
+
cell_bbox = [column['bbox'][0], row['bbox'][1], column['bbox'][2], row['bbox'][3]]
|
167 |
+
return cell_bbox
|
168 |
+
|
169 |
+
# Generate cell coordinates and count cells in each row
|
170 |
+
cell_coordinates = []
|
171 |
+
|
172 |
+
for row in rows:
|
173 |
+
row_cells = []
|
174 |
+
for column in columns:
|
175 |
+
cell_bbox = find_cell_coordinates(row, column)
|
176 |
+
row_cells.append({'column': column['bbox'], 'cell': cell_bbox})
|
177 |
+
|
178 |
+
# Sort cells in the row by X coordinate
|
179 |
+
row_cells.sort(key=lambda x: x['column'][0])
|
180 |
+
|
181 |
+
# Append row information to cell_coordinates
|
182 |
+
cell_coordinates.append({'row': row['bbox'], 'cells': row_cells, 'cell_count': len(row_cells)})
|
183 |
+
|
184 |
+
# Sort rows from top to bottom
|
185 |
+
cell_coordinates.sort(key=lambda x: x['row'][1])
|
186 |
+
|
187 |
+
return cell_coordinates
|
188 |
+
|
189 |
+
|
190 |
+
def apply_ocr(cell_coordinates):
|
191 |
+
# let's OCR row by row
|
192 |
+
data = dict()
|
193 |
+
max_num_columns = 0
|
194 |
+
for idx, row in enumerate(cell_coordinates):
|
195 |
+
row_text = []
|
196 |
+
for cell in row["cells"]:
|
197 |
+
# crop cell out of image
|
198 |
+
cell_image = np.array(cropped_table.crop(cell["cell"]))
|
199 |
+
# apply OCR
|
200 |
+
result = reader.readtext(np.array(cell_image))
|
201 |
+
if len(result) > 0:
|
202 |
+
text = " ".join([x[1] for x in result])
|
203 |
+
row_text.append(text)
|
204 |
+
|
205 |
+
if len(row_text) > max_num_columns:
|
206 |
+
max_num_columns = len(row_text)
|
207 |
+
|
208 |
+
data[idx] = row_text
|
209 |
+
|
210 |
+
# pad rows which don't have max_num_columns elements
|
211 |
+
# to make sure all rows have the same number of columns
|
212 |
+
for row, row_data in data.copy().items():
|
213 |
+
if len(row_data) != max_num_columns:
|
214 |
+
row_data = row_data + ["" for _ in range(max_num_columns - len(row_data))]
|
215 |
+
data[row] = row_data
|
216 |
+
|
217 |
+
return data
|
218 |
|
219 |
|
220 |
def process_pdf(image):
|
221 |
cropped_table = detect_and_crop_table(image)
|
222 |
|
223 |
+
image, cells = recognize_table(cropped_table)
|
224 |
|
225 |
+
cell_coordinates = get_cell_coordinates_by_row(cells)
|
226 |
+
|
227 |
+
data = apply_ocr(cell_coordinates)
|
228 |
+
|
229 |
+
return image, data
|
230 |
|
231 |
|
232 |
title = "Demo: table detection with Table Transformer"
|
|
|
235 |
|
236 |
app = gr.Interface(fn=process_pdf,
|
237 |
inputs=gr.Image(type="pil"),
|
238 |
+
outputs=[gr.Image(type="pil", label="Detected table"), "json"],
|
239 |
title=title,
|
240 |
description=description,
|
241 |
examples=examples)
|