import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.patches import Patch import io from PIL import Image from transformers import TableTransformerImageProcessor, AutoModelForObjectDetection import torch import gradio as gr # load table detection model processor = TableTransformerImageProcessor(max_size=800) model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm") # for output bounding box post-processing def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) def rescale_bboxes(out_bbox, size): img_w, img_h = size b = box_cxcywh_to_xyxy(out_bbox) b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) return b def outputs_to_objects(outputs, img_size, id2label): m = outputs.logits.softmax(-1).max(-1) pred_labels = list(m.indices.detach().cpu().numpy())[0] pred_scores = list(m.values.detach().cpu().numpy())[0] pred_bboxes = outputs['pred_boxes'].detach().cpu()[0] pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)] objects = [] for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes): class_label = id2label[int(label)] if not class_label == 'no object': objects.append({'label': class_label, 'score': float(score), 'bbox': [float(elem) for elem in bbox]}) return objects def fig2img(fig): """Convert a Matplotlib figure to a PIL Image and return it""" buf = io.BytesIO() fig.savefig(buf) buf.seek(0) img = Image.open(buf) return img def visualize_detected_tables(img, det_tables): plt.imshow(img, interpolation="lanczos") fig = plt.gcf() fig.set_size_inches(20, 20) ax = plt.gca() for det_table in det_tables: bbox = det_table['bbox'] if det_table['label'] == 'table': facecolor = (1, 0, 0.45) edgecolor = (1, 0, 0.45) alpha = 0.3 linewidth = 2 hatch='//////' elif det_table['label'] == 'table rotated': facecolor = (0.95, 0.6, 0.1) edgecolor = (0.95, 0.6, 0.1) alpha = 0.3 linewidth = 2 hatch='//////' else: continue rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth, edgecolor='none',facecolor=facecolor, alpha=0.1) ax.add_patch(rect) rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth, edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha) ax.add_patch(rect) rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0, edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2) ax.add_patch(rect) plt.xticks([], []) plt.yticks([], []) legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45), label='Table', hatch='//////', alpha=0.3), Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1), label='Table (rotated)', hatch='//////', alpha=0.3)] plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0, fontsize=10, ncol=2) plt.gcf().set_size_inches(10, 10) plt.axis('off') return fig def detect_table(image): # prepare image for the model pixel_values = processor(image, return_tensors="pt").pixel_values # forward pass with torch.no_grad(): outputs = model(pixel_values) # postprocess to get detected tables id2label = model.config.id2label id2label[len(model.config.id2label)] = "no object" detected_tables = outputs_to_objects(outputs, image.size, id2label) # visualize fig = visualize_detected_tables(img, detected_tables) image = fig2img(fig) return image title = "Demo: table detection with Table Transformer" description = "Demo for the Table Transformer (TATR)." examples =[['example_pdf.jpg']] interface = gr.Interface(fn=detect_table, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil", label="Detected table"), title=title, description=description, examples=examples, enable_queue=True) interface.launch(debug=True)