|
import gradio as gr |
|
from transformers import ViltProcessor, ViltForImagesAndTextClassification |
|
import torch |
|
|
|
|
|
torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg', 'image1.jpg') |
|
torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg', 'image2.jpg') |
|
torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/acorns_1.jpg', 'image3.jpg') |
|
torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/acorns_6.jpg', 'image4.jpg') |
|
|
|
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") |
|
model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") |
|
|
|
def predict(image1, image2, text): |
|
|
|
encoding = processor([image1, image2], text, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0)) |
|
|
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1) |
|
|
|
output = dict() |
|
for label, id in model.config.label2id.items(): |
|
output[label] = probs[:,id].item() |
|
|
|
return output |
|
|
|
images = [gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")] |
|
text = gr.inputs.Textbox(lines=2, label="Sentence") |
|
label = gr.outputs.Label(num_top_classes=2, type="confidences") |
|
|
|
example_sentence_1 = "The left image contains twice the number of dogs as the right image, and at least two dogs in total are standing." |
|
example_sentence_2 = "One image shows exactly two brown acorns in back-to-back caps on green foliage." |
|
examples = [["image1.jpg", "image2.jpg", example_sentence_1], ["image3.jpg", "image4.jpg", example_sentence_2]] |
|
|
|
title = "Interactive demo: natural language visual reasoning with ViLT" |
|
description = "Gradio Demo for ViLT (Vision and Language Transformer), fine-tuned on NLVR2. To use it, simply upload a pair of images and type a sentence and click 'submit', or click one of the examples to load them. The model will predict whether the sentence is true or false, based on the 2 images. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2102.03334' target='_blank'>ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision</a> | <a href='https://github.com/dandelin/ViLT' target='_blank'>Github Repo</a></p>" |
|
|
|
interface = gr.Interface(fn=predict, |
|
inputs=images + [text], |
|
outputs=label, |
|
examples=examples, |
|
title=title, |
|
description=description, |
|
article=article, |
|
theme="default", |
|
enable_queue=True) |
|
interface.launch(debug=True) |