Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
from io import BytesIO | |
from diffusers import StableDiffusionImg2ImgPipeline | |
device="cpu" | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=st.secrets['USER_TOKEN']) | |
pipe.to(device) | |
def resize(value,img): | |
img = Image.open(img) | |
img = img.resize((value,value), Image.Resampling.LANCZOS) | |
return img | |
def infer(source_img, prompt, guide, steps, seed, Strength): | |
generator = torch.Generator('cpu').manual_seed(seed) | |
source_image = resize(512, source_img) | |
source_image.save('source.png') | |
image_list = pipe([prompt], init_image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps) | |
images = [] | |
safe_image = Image.open(r"unsafe.png") | |
for i, image in enumerate(image_list["sample"]): | |
if(image_list["nsfw_content_detected"][i]): | |
images.append(safe_image) | |
else: | |
images.append(image) | |
return image | |
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image"), gr.Textbox(label = 'Prompt Input Text'), | |
gr.Slider(2, 15, value = 7, label = 'Guidence Scale'), | |
gr.Slider(10, 50, value = 25, step = 1, label = 'Number of Iterations'), | |
gr.Slider( | |
label = "Seed", | |
minimum = 0, | |
maximum = 2147483647, | |
step = 1, | |
randomize = True), gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5) | |
], outputs='image').queue(max_size=10).launch(enable_queue=True) | |