Upload 4 files
Browse filesAdding project files
- Ingest.py +61 -0
- app.py +127 -0
- footer.py +68 -0
- requirements.txt +12 -0
Ingest.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ray
|
2 |
+
import logging
|
3 |
+
from langchain_community.document_loaders import DirectoryLoader
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from faiss import IndexFlatL2 # Assuming using L2 distance for simplicity
|
8 |
+
|
9 |
+
# Initialize Ray
|
10 |
+
ray.init()
|
11 |
+
|
12 |
+
# Set up basic configuration for logging
|
13 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
+
|
15 |
+
# Load documents with logging
|
16 |
+
logging.info("Loading documents...")
|
17 |
+
loader = DirectoryLoader('data', glob="./*.txt")
|
18 |
+
documents = loader.load()
|
19 |
+
|
20 |
+
# Extract text from documents and split into manageable texts with logging
|
21 |
+
logging.info("Extracting and splitting texts from documents...")
|
22 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
|
23 |
+
texts = []
|
24 |
+
for document in documents:
|
25 |
+
if hasattr(document, 'get_text'):
|
26 |
+
text_content = document.get_text() # Adjust according to actual method
|
27 |
+
else:
|
28 |
+
text_content = "" # Default to empty string if no text method is available
|
29 |
+
|
30 |
+
texts.extend(text_splitter.split_text(text_content))
|
31 |
+
|
32 |
+
# Define embedding function
|
33 |
+
def embedding_function(text):
|
34 |
+
embeddings_model = HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
|
35 |
+
return embeddings_model.embed_query(text)
|
36 |
+
|
37 |
+
# Create FAISS index for embeddings
|
38 |
+
index = IndexFlatL2(768) # Dimension of embeddings, adjust as needed
|
39 |
+
|
40 |
+
# Assuming docstore as a simple dictionary to store document texts
|
41 |
+
docstore = {i: text for i, text in enumerate(texts)}
|
42 |
+
index_to_docstore_id = {i: i for i in range(len(texts))}
|
43 |
+
|
44 |
+
# Initialize FAISS
|
45 |
+
faiss_db = FAISS(embedding_function, index, docstore, index_to_docstore_id)
|
46 |
+
|
47 |
+
# Process and store embeddings
|
48 |
+
logging.info("Storing embeddings in FAISS...")
|
49 |
+
for i, text in enumerate(texts):
|
50 |
+
embedding = embedding_function(text)
|
51 |
+
faiss_db.add_documents([embedding])
|
52 |
+
|
53 |
+
# Exporting the vector embeddings database with logging
|
54 |
+
logging.info("Exporting the vector embeddings database...")
|
55 |
+
faiss_db.save_local("ipc_embed_db")
|
56 |
+
|
57 |
+
# Log a message to indicate the completion of the process
|
58 |
+
logging.info("Process completed successfully.")
|
59 |
+
|
60 |
+
# Shutdown Ray after the process
|
61 |
+
ray.shutdown()
|
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import streamlit as st
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain.memory import ConversationBufferWindowMemory
|
8 |
+
from langchain.chains import ConversationalRetrievalChain
|
9 |
+
from langchain_together import Together
|
10 |
+
|
11 |
+
from footer import footer
|
12 |
+
|
13 |
+
# Set the Streamlit page configuration and theme
|
14 |
+
st.set_page_config(page_title="BharatLAW", layout="centered")
|
15 |
+
|
16 |
+
# Display the logo image
|
17 |
+
col1, col2, col3 = st.columns([1, 30, 1])
|
18 |
+
with col2:
|
19 |
+
st.image("D:/BharatLAW/images/banner.png", use_column_width=True)
|
20 |
+
|
21 |
+
def hide_hamburger_menu():
|
22 |
+
st.markdown("""
|
23 |
+
<style>
|
24 |
+
#MainMenu {visibility: hidden;}
|
25 |
+
footer {visibility: hidden;}
|
26 |
+
</style>
|
27 |
+
""", unsafe_allow_html=True)
|
28 |
+
|
29 |
+
hide_hamburger_menu()
|
30 |
+
|
31 |
+
# Initialize session state for messages and memory
|
32 |
+
if "messages" not in st.session_state:
|
33 |
+
st.session_state.messages = []
|
34 |
+
|
35 |
+
if "memory" not in st.session_state:
|
36 |
+
st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True)
|
37 |
+
|
38 |
+
@st.cache_resource
|
39 |
+
def load_embeddings():
|
40 |
+
"""Load and cache the embeddings model."""
|
41 |
+
return HuggingFaceEmbeddings(model_name="nlpaueb/legal-bert-base-uncased")
|
42 |
+
|
43 |
+
embeddings = load_embeddings()
|
44 |
+
db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True)
|
45 |
+
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
46 |
+
|
47 |
+
prompt_template = """
|
48 |
+
<s>[INST]
|
49 |
+
As a legal chatbot specializing in the Indian Penal Code, you are tasked with providing highly accurate and contextually appropriate responses. Ensure your answers meet these criteria:
|
50 |
+
- Respond in a bullet-point format to clearly delineate distinct aspects of the legal query.
|
51 |
+
- Each point should accurately reflect the breadth of the legal provision in question, avoiding over-specificity unless directly relevant to the user's query.
|
52 |
+
- Clarify the general applicability of the legal rules or sections mentioned, highlighting any common misconceptions or frequently misunderstood aspects.
|
53 |
+
- Limit responses to essential information that directly addresses the user's question, providing concise yet comprehensive explanations.
|
54 |
+
- Avoid assuming specific contexts or details not provided in the query, focusing on delivering universally applicable legal interpretations unless otherwise specified.
|
55 |
+
- Conclude with a brief summary that captures the essence of the legal discussion and corrects any common misinterpretations related to the topic.
|
56 |
+
|
57 |
+
CONTEXT: {context}
|
58 |
+
CHAT HISTORY: {chat_history}
|
59 |
+
QUESTION: {question}
|
60 |
+
ANSWER:
|
61 |
+
- Point 1: [Detail the first key aspect of the law, ensuring it reflects general application]
|
62 |
+
- Point 2: [Provide a concise explanation of how the law is typically interpreted or applied]
|
63 |
+
- Point 3: [Correct a common misconception or clarify a frequently misunderstood aspect]
|
64 |
+
- Point 4: [Detail any exceptions to the general rule, if applicable]
|
65 |
+
- Point 5: [Include any additional relevant information that directly relates to the user's query]
|
66 |
+
</s>[INST]
|
67 |
+
"""
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
prompt = PromptTemplate(template=prompt_template,
|
72 |
+
input_variables=['context', 'question', 'chat_history'])
|
73 |
+
|
74 |
+
api_key = os.getenv('TOGETHER_API_KEY')
|
75 |
+
llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key)
|
76 |
+
|
77 |
+
qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt})
|
78 |
+
|
79 |
+
def extract_answer(full_response):
|
80 |
+
"""Extracts the answer from the LLM's full response by removing the instructional text."""
|
81 |
+
answer_start = full_response.find("Response:")
|
82 |
+
if answer_start != -1:
|
83 |
+
answer_start += len("Response:")
|
84 |
+
answer_end = len(full_response)
|
85 |
+
return full_response[answer_start:answer_end].strip()
|
86 |
+
return full_response
|
87 |
+
|
88 |
+
def reset_conversation():
|
89 |
+
st.session_state.messages = []
|
90 |
+
st.session_state.memory.clear()
|
91 |
+
|
92 |
+
for message in st.session_state.messages:
|
93 |
+
with st.chat_message(message["role"]):
|
94 |
+
st.write(message["content"])
|
95 |
+
|
96 |
+
|
97 |
+
input_prompt = st.chat_input("Say something...")
|
98 |
+
if input_prompt:
|
99 |
+
with st.chat_message("user"):
|
100 |
+
st.markdown(f"**You:** {input_prompt}")
|
101 |
+
|
102 |
+
st.session_state.messages.append({"role": "user", "content": input_prompt})
|
103 |
+
with st.chat_message("assistant"):
|
104 |
+
with st.spinner("Thinking 💡..."):
|
105 |
+
result = qa.invoke(input=input_prompt)
|
106 |
+
message_placeholder = st.empty()
|
107 |
+
answer = extract_answer(result["answer"])
|
108 |
+
|
109 |
+
# Initialize the response message
|
110 |
+
full_response = "⚠️ **_Note: Information provided may be inaccurate._** \n\n\n"
|
111 |
+
for chunk in answer:
|
112 |
+
# Simulate typing by appending chunks of the response over time
|
113 |
+
full_response += chunk
|
114 |
+
time.sleep(0.02) # Adjust the sleep time to control the "typing" speed
|
115 |
+
message_placeholder.markdown(full_response + " |", unsafe_allow_html=True)
|
116 |
+
|
117 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
118 |
+
|
119 |
+
if st.button('🗑️ Reset All Chat', on_click=reset_conversation):
|
120 |
+
st.experimental_rerun()
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
# Define the CSS to style the footer
|
125 |
+
footer()
|
126 |
+
|
127 |
+
|
footer.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from htbuilder import HtmlElement, div, a, p, img, styles
|
3 |
+
from htbuilder.units import percent, px
|
4 |
+
|
5 |
+
|
6 |
+
def image(src_as_string, **style):
|
7 |
+
return img(src=src_as_string, style=styles(**style))
|
8 |
+
|
9 |
+
|
10 |
+
def link(link, text, **style):
|
11 |
+
return a(_href=link, _target="_blank", style=styles(**style))(text)
|
12 |
+
|
13 |
+
|
14 |
+
def layout(*args):
|
15 |
+
|
16 |
+
style = """
|
17 |
+
<style>
|
18 |
+
# MainMenu {visibility: hidden;}
|
19 |
+
footer {visibility: hidden;}
|
20 |
+
.stApp { bottom: 40px; }
|
21 |
+
.st-emotion-cache-139wi93 {
|
22 |
+
width: 100%;
|
23 |
+
padding: 1rem 1rem 15px;
|
24 |
+
max-width: 46rem;
|
25 |
+
}
|
26 |
+
</style>
|
27 |
+
"""
|
28 |
+
|
29 |
+
style_div = styles(
|
30 |
+
position="fixed",
|
31 |
+
left=0,
|
32 |
+
bottom=0,
|
33 |
+
margin=px(0, 0, 0, 0),
|
34 |
+
width=percent(100),
|
35 |
+
color="white",
|
36 |
+
text_align="center",
|
37 |
+
height="auto",
|
38 |
+
opacity=1
|
39 |
+
)
|
40 |
+
|
41 |
+
body = p()
|
42 |
+
foot = div(
|
43 |
+
style=style_div
|
44 |
+
)(
|
45 |
+
body
|
46 |
+
)
|
47 |
+
|
48 |
+
st.markdown(style, unsafe_allow_html=True)
|
49 |
+
|
50 |
+
for arg in args:
|
51 |
+
if isinstance(arg, str):
|
52 |
+
body(arg)
|
53 |
+
|
54 |
+
elif isinstance(arg, HtmlElement):
|
55 |
+
body(arg)
|
56 |
+
|
57 |
+
st.markdown(str(foot), unsafe_allow_html=True)
|
58 |
+
|
59 |
+
|
60 |
+
def footer():
|
61 |
+
myargs = [
|
62 |
+
"Made with ❤️ by Nikhil, Mihir, Nilay",
|
63 |
+
]
|
64 |
+
layout(*myargs)
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
footer()
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain==0.1.15
|
2 |
+
pypdf
|
3 |
+
transformers==4.39.3
|
4 |
+
sentence-transformers
|
5 |
+
accelerate
|
6 |
+
faiss-cpu
|
7 |
+
streamlit==1.33.0
|
8 |
+
langchain-fireworks
|
9 |
+
einops
|
10 |
+
langchain-together
|
11 |
+
ray==2.10.0
|
12 |
+
unstructured
|