countgd / datasets /sltransform.py
nikigoli's picture
Upload folder using huggingface_hub
a277bb8 verified
# modified from https://github.com/anhtuan85/Data-Augmentation-for-Object-Detection/blob/master/augmentation.ipynb
import PIL #version 1.2.0
from PIL import Image #version 6.1.0
import torch
import os
import torchvision.transforms.functional as F
import numpy as np
import random
from .random_crop import random_crop
from util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
class AdjustContrast:
def __init__(self, contrast_factor):
self.contrast_factor = contrast_factor
def __call__(self, img, target):
"""
img (PIL Image or Tensor): Image to be adjusted.
"""
_contrast_factor = ((random.random() + 1.0) / 2.0) * self.contrast_factor
img = F.adjust_contrast(img, _contrast_factor)
return img, target
class AdjustBrightness:
def __init__(self, brightness_factor):
self.brightness_factor = brightness_factor
def __call__(self, img, target):
"""
img (PIL Image or Tensor): Image to be adjusted.
"""
_brightness_factor = ((random.random() + 1.0) / 2.0) * self.brightness_factor
img = F.adjust_brightness(img, _brightness_factor)
return img, target
def lighting_noise(image):
'''
color channel swap in image
image: A PIL image
'''
new_image = image
perms = ((0, 1, 2), (0, 2, 1), (1, 0, 2),
(1, 2, 0), (2, 0, 1), (2, 1, 0))
swap = perms[random.randint(0, len(perms)- 1)]
new_image = F.to_tensor(new_image)
new_image = new_image[swap, :, :]
new_image = F.to_pil_image(new_image)
return new_image
class LightingNoise:
def __init__(self) -> None:
pass
def __call__(self, img, target):
return lighting_noise(img), target
def rotate(image, boxes, angle):
'''
Rotate image and bounding box
image: A Pil image (w, h)
boxes: A tensors of dimensions (#objects, 4)
Out: rotated image (w, h), rotated boxes
'''
new_image = image.copy()
new_boxes = boxes.clone()
#Rotate image, expand = True
w = image.width
h = image.height
cx = w/2
cy = h/2
new_image = new_image.rotate(angle, expand=True)
angle = np.radians(angle)
alpha = np.cos(angle)
beta = np.sin(angle)
#Get affine matrix
AffineMatrix = torch.tensor([[alpha, beta, (1-alpha)*cx - beta*cy],
[-beta, alpha, beta*cx + (1-alpha)*cy]])
#Rotation boxes
box_width = (boxes[:,2] - boxes[:,0]).reshape(-1,1)
box_height = (boxes[:,3] - boxes[:,1]).reshape(-1,1)
#Get corners for boxes
x1 = boxes[:,0].reshape(-1,1)
y1 = boxes[:,1].reshape(-1,1)
x2 = x1 + box_width
y2 = y1
x3 = x1
y3 = y1 + box_height
x4 = boxes[:,2].reshape(-1,1)
y4 = boxes[:,3].reshape(-1,1)
corners = torch.stack((x1,y1,x2,y2,x3,y3,x4,y4), dim= 1)
# corners.reshape(-1, 8) #Tensors of dimensions (#objects, 8)
corners = corners.reshape(-1,2) #Tensors of dimension (4* #objects, 2)
corners = torch.cat((corners, torch.ones(corners.shape[0], 1)), dim= 1) #(Tensors of dimension (4* #objects, 3))
cos = np.abs(AffineMatrix[0, 0])
sin = np.abs(AffineMatrix[0, 1])
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
AffineMatrix[0, 2] += (nW / 2) - cx
AffineMatrix[1, 2] += (nH / 2) - cy
#Apply affine transform
rotate_corners = torch.mm(AffineMatrix, corners.t().to(torch.float64)).t()
rotate_corners = rotate_corners.reshape(-1,8)
x_corners = rotate_corners[:,[0,2,4,6]]
y_corners = rotate_corners[:,[1,3,5,7]]
#Get (x_min, y_min, x_max, y_max)
x_min, _ = torch.min(x_corners, dim= 1)
x_min = x_min.reshape(-1, 1)
y_min, _ = torch.min(y_corners, dim= 1)
y_min = y_min.reshape(-1, 1)
x_max, _ = torch.max(x_corners, dim= 1)
x_max = x_max.reshape(-1, 1)
y_max, _ = torch.max(y_corners, dim= 1)
y_max = y_max.reshape(-1, 1)
new_boxes = torch.cat((x_min, y_min, x_max, y_max), dim= 1)
scale_x = new_image.width / w
scale_y = new_image.height / h
#Resize new image to (w, h)
new_image = new_image.resize((w, h))
#Resize boxes
new_boxes /= torch.Tensor([scale_x, scale_y, scale_x, scale_y])
new_boxes[:, 0] = torch.clamp(new_boxes[:, 0], 0, w)
new_boxes[:, 1] = torch.clamp(new_boxes[:, 1], 0, h)
new_boxes[:, 2] = torch.clamp(new_boxes[:, 2], 0, w)
new_boxes[:, 3] = torch.clamp(new_boxes[:, 3], 0, h)
return new_image, new_boxes
# def convert_xywh_to_xyxy(boxes: torch.Tensor):
# _boxes = boxes.clone()
# box_xy = _boxes[:, :2]
# box_wh = _boxes[:, 2:]
# box_x1y1 = box_xy - box_wh/2
# box_x2y2 = box_xy + box_wh/2
# box_xyxy = torch.cat((box_x1y1, box_x2y2), dim=-1)
# return box_xyxy
class Rotate:
def __init__(self, angle=10) -> None:
self.angle = angle
def __call__(self, img, target):
w,h = img.size
whwh = torch.Tensor([w, h, w, h])
boxes_xyxy = box_cxcywh_to_xyxy(target['boxes']) * whwh
img, boxes_new = rotate(img, boxes_xyxy, self.angle)
target['boxes'] = box_xyxy_to_cxcywh(boxes_new).to(boxes_xyxy.dtype) / (whwh + 1e-3)
return img, target
class RandomCrop:
def __init__(self) -> None:
pass
def __call__(self, img, target):
w,h = img.size
try:
boxes_xyxy = target['boxes']
labels = target['labels']
img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels)
target['boxes'] = new_boxes
target['labels'] = new_labels
except Exception as e:
pass
return img, target
class RandomCropDebug:
def __init__(self) -> None:
pass
def __call__(self, img, target):
boxes_xyxy = target['boxes'].clone()
labels = target['labels'].clone()
img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels)
target['boxes'] = new_boxes
target['labels'] = new_labels
return img, target
class RandomSelectMulti(object):
"""
Randomly selects between transforms1 and transforms2,
"""
def __init__(self, transformslist, p=-1):
self.transformslist = transformslist
self.p = p
assert p == -1
def __call__(self, img, target):
if self.p == -1:
return random.choice(self.transformslist)(img, target)
class Albumentations:
def __init__(self):
import albumentations as A
self.transform = A.Compose([
A.Blur(p=0.01),
A.MedianBlur(p=0.01),
A.ToGray(p=0.01),
A.CLAHE(p=0.01),
A.RandomBrightnessContrast(p=0.005),
A.RandomGamma(p=0.005),
A.ImageCompression(quality_lower=75, p=0.005)],
bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))
def __call__(self, img, target, p=1.0):
"""
Input:
target['boxes']: xyxy, unnormalized data.
"""
boxes_raw = target['boxes']
labels_raw = target['labels']
img_np = np.array(img)
if self.transform and random.random() < p:
new_res = self.transform(image=img_np, bboxes=boxes_raw, class_labels=labels_raw) # transformed
boxes_new = torch.Tensor(new_res['bboxes']).to(boxes_raw.dtype).reshape_as(boxes_raw)
img_np = new_res['image']
labels_new = torch.Tensor(new_res['class_labels']).to(labels_raw.dtype)
img_new = Image.fromarray(img_np)
target['boxes'] = boxes_new
target['labels'] = labels_new
return img_new, target