Spaces:
Running
on
T4
Running
on
T4
Added a check to check the install of MS Deform Atten
Browse files
app.py
CHANGED
@@ -49,6 +49,85 @@ class AppSteps(Enum):
|
|
49 |
|
50 |
CONF_THRESH = 0.23
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# MODEL:
|
53 |
def get_args_parser():
|
54 |
"""
|
@@ -164,7 +243,7 @@ def build_model_and_transforms(args):
|
|
164 |
|
165 |
parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()])
|
166 |
args = parser.parse_args()
|
167 |
-
|
168 |
device = get_device()
|
169 |
model, transform = build_model_and_transforms(args)
|
170 |
model = model.to(device)
|
|
|
49 |
|
50 |
CONF_THRESH = 0.23
|
51 |
|
52 |
+
@spaces.GPU
|
53 |
+
def check_ms_deform_install():
|
54 |
+
from __future__ import absolute_import
|
55 |
+
from __future__ import print_function
|
56 |
+
from __future__ import division
|
57 |
+
|
58 |
+
import time
|
59 |
+
import torch
|
60 |
+
import torch.nn as nn
|
61 |
+
from torch.autograd import gradcheck
|
62 |
+
|
63 |
+
from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch
|
64 |
+
|
65 |
+
|
66 |
+
N, M, D = 1, 2, 2
|
67 |
+
Lq, L, P = 2, 2, 2
|
68 |
+
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
|
69 |
+
level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1]))
|
70 |
+
S = sum([(H*W).item() for H, W in shapes])
|
71 |
+
|
72 |
+
|
73 |
+
torch.manual_seed(3)
|
74 |
+
|
75 |
+
|
76 |
+
@torch.no_grad()
|
77 |
+
def check_forward_equal_with_pytorch_double():
|
78 |
+
value = torch.rand(N, S, M, D).cuda() * 0.01
|
79 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
80 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
81 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
82 |
+
im2col_step = 2
|
83 |
+
output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu()
|
84 |
+
output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu()
|
85 |
+
fwdok = torch.allclose(output_cuda, output_pytorch)
|
86 |
+
max_abs_err = (output_cuda - output_pytorch).abs().max()
|
87 |
+
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
|
88 |
+
|
89 |
+
print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
|
90 |
+
|
91 |
+
|
92 |
+
@torch.no_grad()
|
93 |
+
def check_forward_equal_with_pytorch_float():
|
94 |
+
value = torch.rand(N, S, M, D).cuda() * 0.01
|
95 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
96 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
97 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
98 |
+
im2col_step = 2
|
99 |
+
output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu()
|
100 |
+
output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu()
|
101 |
+
fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3)
|
102 |
+
max_abs_err = (output_cuda - output_pytorch).abs().max()
|
103 |
+
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
|
104 |
+
|
105 |
+
print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
|
106 |
+
|
107 |
+
|
108 |
+
def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True):
|
109 |
+
|
110 |
+
value = torch.rand(N, S, M, channels).cuda() * 0.01
|
111 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
112 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
113 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
114 |
+
im2col_step = 2
|
115 |
+
func = MSDeformAttnFunction.apply
|
116 |
+
|
117 |
+
value.requires_grad = grad_value
|
118 |
+
sampling_locations.requires_grad = grad_sampling_loc
|
119 |
+
attention_weights.requires_grad = grad_attn_weight
|
120 |
+
|
121 |
+
gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step))
|
122 |
+
|
123 |
+
print(f'* {gradok} check_gradient_numerical(D={channels})')
|
124 |
+
|
125 |
+
check_forward_equal_with_pytorch_double()
|
126 |
+
check_forward_equal_with_pytorch_float()
|
127 |
+
|
128 |
+
for channels in [30, 32, 64, 71]:
|
129 |
+
check_gradient_numerical(channels, True, True, True)
|
130 |
+
|
131 |
# MODEL:
|
132 |
def get_args_parser():
|
133 |
"""
|
|
|
243 |
|
244 |
parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()])
|
245 |
args = parser.parse_args()
|
246 |
+
check_ms_deform_install()
|
247 |
device = get_device()
|
248 |
model, transform = build_model_and_transforms(args)
|
249 |
model = model.to(device)
|