File size: 4,250 Bytes
88f7073 3cdb410 11023cf e37c63c fa56bd3 5756bb8 fa56bd3 e37c63c 3cdb410 e37c63c fa56bd3 65cb2a1 fa56bd3 65cb2a1 fa56bd3 65cb2a1 7e4b5db 471fe68 fa56bd3 471fe68 fa56bd3 471fe68 e37c63c 471fe68 1a0b3dd 471fe68 e37c63c 88f7073 471fe68 65cb2a1 471fe68 2ea96fb 471fe68 fa56bd3 471fe68 88f7073 d536f9b 88f7073 e37c63c fa56bd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
import torch
from TTS.api import TTS
import os
import spaces
import tempfile
from pymongo import MongoClient
from dotenv import load_dotenv
from huggingface_hub import hf_hub_download
# Load environment variables
load_dotenv()
# Get MongoDB URI and Hugging Face token from .env file
mongodb_uri = os.getenv('MONGODB_URI')
hf_token = os.getenv('HF_TOKEN')
# Connect to MongoDB
client = MongoClient(mongodb_uri)
db = client['mitra']
voices_collection = db['voices']
os.environ["COQUI_TOS_AGREED"] = "1"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize TTS model
def load_tts_model():
return TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
tts = load_tts_model()
# Fetch celebrity voices from MongoDB
def get_celebrity_voices():
voices = {}
for category in voices_collection.find():
for voice in category['voices']:
voices[voice['name']] = f"voices/{voice['name']}.mp3"
return voices
celebrity_voices = get_celebrity_voices()
def check_voice_files():
"""
Checks if all voice files exist in the Hugging Face repository.
Returns a message listing missing files or confirming all files are present.
"""
missing = []
for voice, path in celebrity_voices.items():
try:
hf_hub_download(repo_id="nikkmitra/clone", filename=path, repo_type="space", token=hf_token)
except Exception:
missing.append(f"{voice}: {path}")
if missing:
return "**Missing Voice Files:**\n" + "\n".join(missing)
else:
return "**All voice files are present.** 🎉"
@spaces.GPU(duration=120)
def tts_generate(text, voice, language):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
temp_audio_path = temp_audio.name
voice_file = hf_hub_download(repo_id="nikkmitra/clone", filename=celebrity_voices[voice], repo_type="space", token=hf_token)
tts.tts_to_file(
text=text,
speaker_wav=voice_file,
language=language,
file_path=temp_audio_path
)
return temp_audio_path
@spaces.GPU(enable_queue=True)
def clone_voice(text, audio_file, language):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
temp_audio_path = temp_audio.name
tts.tts_to_file(
text=text,
speaker_wav=audio_file,
language=language,
file_path=temp_audio_path
)
return temp_audio_path
# Define Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Advanced Voice Synthesis")
# Display voice files status
voice_status = check_voice_files()
gr.Markdown(voice_status)
with gr.Tabs():
with gr.TabItem("TTS"):
with gr.Row():
tts_text = gr.Textbox(label="Text to speak")
tts_voice = gr.Dropdown(choices=list(celebrity_voices.keys()), label="Celebrity Voice")
tts_language = gr.Dropdown(["en", "es", "fr", "de", "it", "ar","hi"], label="Language", value="en")
tts_generate_btn = gr.Button("Generate")
tts_output = gr.Audio(label="Generated Audio")
tts_generate_btn.click(
tts_generate,
inputs=[tts_text, tts_voice, tts_language],
outputs=tts_output
)
with gr.TabItem("Clone Voice"):
with gr.Row():
clone_text = gr.Textbox(label="Text to speak")
clone_audio = gr.Audio(label="Voice reference audio file", type="filepath")
clone_language = gr.Dropdown(["en", "es", "fr", "de", "it", "ar"], label="Language", value="en")
clone_generate_btn = gr.Button("Generate")
clone_output = gr.Audio(label="Generated Audio")
clone_generate_btn.click(
clone_voice,
inputs=[clone_text, clone_audio, clone_language],
outputs=clone_output
)
# Launch the interface
demo.launch()
# Clean up temporary files (this will run after the Gradio server is closed)
for file in os.listdir():
if file.endswith('.wav') and file.startswith('tmp'):
os.remove(file) |